Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(4): e17249, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572713

RESUMO

Warming as well as species introductions have increased over the past centuries, however a link between cause and effect of these two phenomena is still unclear. Here we use distribution records (1813-2023) to reconstruct the invasion histories of marine non-native macrophytes, macroalgae and seagrasses, in the Mediterranean Sea. We defined expansion as the maximum linear rate of spread (km year-1) and the accumulation of occupied grid cells (50 km2) over time and analyzed the relation between expansion rates and the species' thermal conditions at its native distribution range. Our database revealed a marked increase in the introductions and spread rates of non-native macrophytes in the Mediterranean Sea since the 1960s, notably intensifying after the 1990s. During the beginning of this century species velocity of invasion has increased to 26 ± 9 km2 year-1, with an acceleration in the velocity of invasion of tropical/subtropical species, exceeding those of temperate and cosmopolitan macrophytes. The highest spread rates since then were observed in macrophytes coming from native regions with minimum SSTs two to three degrees warmer than in the Mediterranean Sea. In addition, most non-native macrophytes in the Mediterranean (>80%) do not exceed the maximum temperature of their range of origin, whereas approximately half of the species are exposed to lower minimum SST in the Mediterranean than in their native range. This indicates that tropical/subtropical macrophytes might be able to expand as they are not limited by the colder Mediterranean SST due to the plasticity of their lower thermal limit. These results suggest that future warming will increase the thermal habitat available for thermophilic species in the Mediterranean Sea and continue to favor their expansion.


Assuntos
Espécies Introduzidas , Alga Marinha , Mar Mediterrâneo , Ecossistema , Temperatura
2.
EuroMediterr J Environ Integr ; : 1-14, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37361134

RESUMO

Maritime transport is a vital sector for global trade and the world economy. Particularly for islands, there is also an important social dimension of this sector, since island communities strongly rely on it for a connection with the mainland and the transportation of goods and passengers. Furthermore, islands are exceptionally vulnerable to climate change, as the rising sea level and extreme events are expected to induce severe impacts. Such hazards are anticipated to also affect the operations of the maritime transport sector by affecting either the port infrastructure or ships en route. The present study is an effort to better comprehend and assess the future risk of maritime transport disruption in six European islands and archipelagos, and it aims at supporting regional to local policy and decision-making. We employ state-of-the-art regional climate datasets and the widely used impact chain approach to identify the different components that might drive such risks. Larger islands (e.g., Corsica, Cyprus and Crete) are found to be more resilient to the impacts of climate change on maritime operations. Our findings also highlight the importance of adopting a low-emission pathway, since this will keep the risk of maritime transport disruption similar to present levels or even slightly decreased for some islands because of an enhanced adaptation capacity and advantageous demographic changes. Supplementary Information: The online version contains supplementary material available at 10.1007/s41207-023-00370-6.

3.
Sci Rep ; 13(1): 8649, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244929

RESUMO

The Hunga Tonga-Hunga Ha'apai volcano eruption of January 15th 2022 generated a global atmospheric and oceanic response that was recorded by an unprecedented amount of sensors. The eruption caused an atmospheric perturbation that travelled as a Lamb wave surrounding the Earth at least 3 times, and was recorded by hundreds of barographs worldwide. The atmospheric wave showed complex patterns of amplitude and spectral energy content, although most of the energy was concentrated in the band (2-120 min). Simultaneously to each passage of the atmospheric wave and after, significant Sea Level Oscillations (SLOs) in the tsunami frequency band were recorded by tide gauges located all around the globe, in what it can be referred to as a global meteotsunami. The amplitude and dominant frequency of the recorded SLOs showed a high spatial heterogeneity. Our point is that the geometry of continental shelves and harbours acted as tuners for the surface waves generated by the atmospheric disturbance at open sea, amplifying the signal at the eigenmodes of each shelf and harbour.

4.
New Phytol ; 233(4): 1657-1666, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34843111

RESUMO

The prevalence of local adaptation and phenotypic plasticity among populations is critical to accurately predicting when and where climate change impacts will occur. Currently, comparisons of thermal performance between populations are untested for most marine species or overlooked by models predicting the thermal sensitivity of species to extirpation. Here we compared the ecological response and recovery of seagrass populations (Posidonia oceanica) to thermal stress throughout a year-long translocation experiment across a 2800-km gradient in ocean climate. Transplants in central and warm-edge locations experienced temperatures > 29°C, representing thermal anomalies > 5°C above long-term maxima for cool-edge populations, 1.5°C for central and < 1°C for warm-edge populations. Cool-edge, central and warm-edge populations differed in thermal performance when grown under common conditions, but patterns contrasted with expectations based on thermal geography. Cool-edge populations did not differ from warm-edge populations under common conditions and performed significantly better than central populations in growth and survival. Our findings reveal that thermal performance does not necessarily reflect the thermal geography of a species. We demonstrate that warm-edge populations can be less sensitive to thermal stress than cooler, central populations suggesting that Mediterranean seagrasses have greater resilience to warming than current paradigms suggest.


Assuntos
Alismatales , Ecossistema , Aclimatação , Mudança Climática , Oceanos e Mares , Temperatura
5.
Reg Environ Change ; 21(4): 107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720740

RESUMO

Understanding the local effects of global warming-derived impacts is important to island systems due to their fragile environmental conditions. This is especially true when it comes to Mediterranean insular regions as they are climate change (CC) hotspots where adaptation and mitigation policy design is an urgent matter. Looking at 2030 as a time horizon for climate action and focusing on the Balearic Islands, this paper reviews the physical changes projected for the coming decades as a result of CC and analyses their impacts on regional environmental, economic and social variables. Mitigation and adaptation measures are also proposed based on the identified priority impacts. The fact the Balearics are a top world holiday destination allows the analysis to serve as a guide to other Mediterranean islands with tourism-based economies facing similar CC scenarios. Results show the projected rise of temperature and sea level; the reduction of the average precipitation and increase in evapotranspiration, the droughts and the increase in ocean acidification and deoxygenation are the main threats faced by the Balearics, this putting their economy at risk due to the high tourism's vulnerability to CC. Mitigation and adaptation action on terrestrial and marine ecosystems, water resources, energy, infrastructure and urban planning, human health, economy, law and education is recommended. Sustainable mobility and waste managing are also viewed as important fields for mitigation action. Conclusions show that diversifying the current socioeconomic model is needed to increase the community and territory resilience. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10113-021-01810-1.

6.
PLoS One ; 16(7): e0255505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34329351

RESUMO

The increase of the temperature in the Red Sea basin due to global warming could have a large negative effect on its marine ecosystem. Consequently, there is a growing interest, from the scientific community and public organizations, in obtaining reliable projections of the Red Sea temperatures throughout the 21st century. However, the main tool used to do climate projections, the global climate models (GCM), may not be well suited for that relatively small region. In this work we assess the skills of the CMIP5 ensemble of GCMs in reproducing different aspects of the Red Sea 3D temperature variability. The results suggest that some of the GCMs are able to reproduce the present variability at large spatial scales with accuracy comparable to medium and high-resolution hindcasts. In general, the skills of the GCMs are better inside the Red Sea than outside, in the Gulf of Aden. Based on their performance, 8 of the original ensemble of 43 GCMs have been selected to project the temperature evolution of the basin. Bearing in mind the GCM limitations, this can be an useful benchmark once the high resolution projections are available. Those models project an averaged warming at the end of the century (2080-2100) of 3.3 ±> 0.6°C and 1.6 ±> 0.4°C at the surface under the scenarios RCP8.5 and RCP4.5, respectively. In the deeper layers the warming is projected to be smaller, reaching 2.2 ±> 0.5°C and 1.5 ±> 0.3°C at 300 m. The projected warming will largely overcome the natural multidecadal variability, which could induce temporary and moderate decrease of the temperatures but not enough to fully counteract it. We have also estimated how the rise of the mean temperature could modify the characteristics of the marine heatwaves in the region. The results show that the average length of the heatwaves would increase ~15 times and the intensity of the heatwaves ~4 times with respect to the present conditions under the scenario RCP8.5 (10 time and 3.6 times, respectively, under scenario RCP4.5).


Assuntos
Clima , Aquecimento Global , Temperatura Alta , Modelos Teóricos , Oceano Índico
7.
Mar Pollut Bull ; 155: 111159, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32469776

RESUMO

The 3D dispersion of marine litter (ML) over the Mediterranean basin has been simulated using the velocity fields from a high resolution circulation model as base to run a 3D Lagrangian model. Three simulations have been performed to mimic the evolution of ML with density lower, similar, or higher than seawater. In all cases a realistic distribution of ML sources was used. Our results show that the accumulation/dispersion areas of the floating and buoyancy neutral particles are practically the same, although the latter are distributed in the water column, 80% of them found in the photic layer (average depth of 35m). Regarding to the densest particles, they rapidly sink and reach the seafloor close to their source. The regions of higher temporal variability mostly coincide with the ML accumulation regions. Weak seasonal variability occurs at a sub-basin scale as a result of the particles redistribution induced by the seasonal variability of the current field.


Assuntos
Plásticos , Resíduos/análise , Monitoramento Ambiental , Mar Mediterrâneo , Água do Mar
8.
Nat Ecol Evol ; 4(1): 109-114, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31900450

RESUMO

Vertical migration to reach cooler waters is a suitable strategy for some marine organisms to adapt to ocean warming. Here, we calculate that realized vertical isotherm migration rates averaged -6.6 + 18.8 m dec-1 across the global ocean between 1980 and 2015. Throughout this century (2006-2100), surface isotherms are projected to deepen at an increasing rate across the globe, averaging -32.3 m dec-1 under the representative concentration pathway (RCP)8.5 'business as usual' emissions scenario, and -18.7 m dec-1 under the more moderate RCP4.5 scenario. The vertical redistribution required by organisms to follow surface isotherms over this century is three to four orders of magnitude less than the equivalent horizontal redistribution distance. However, the seafloor depth and the depth of the photic layer pose ultimate limits to the vertical migration possible by species. Both limits will be reached by the end of this century across much of the ocean, leading to a rapid global compression of the three-dimensional (3D) habitat of many marine organisms. Phytoplankton diversity may be maintained but displaced toward the base of the photic layer, whereas highly productive benthic habitats, especially corals, will have their suitable 3D habitat rapidly reduced.


Assuntos
Antozoários , Mudança Climática , Animais , Organismos Aquáticos , Ecossistema , Fitoplâncton
9.
Ecol Evol ; 8(23): 12032-12043, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598797

RESUMO

The Mediterranean Sea is warming at three times the rate of the global ocean raising concerns about the vulnerability of marine organisms to climate change. Macrophytes play a key role in coastal ecosystems, therefore predicting how warming will affect these key species is critical to understand the effects of climate change on Mediterranean coastal ecosystems. We measured the physiological performance of six dominant native Mediterranean macrophytes under ten temperature treatments ranging from 12 to 34°C to examine their thermal niche, and vulnerability to projected warming in the western Mediterranean up until 2100. Among the macrophytes tested, Cymodocea nodosa was the species with the highest thermal optima and it was beyond current summer temperature. Therefore, C. nodosa may benefit from projected warming over the coming century. The optimal temperature for growth of the other species (Posidonia oceanica, Cystoseira compressa, Padina pavonica, Caulerpa prolifera, and Halimeda tuna) was lower. Similarly, the species presented different upper lethal limits, spanning at least across 5.1°C between 28.9°C (P. oceanica) and >34°C (C. nodosa). Our results demonstrate the variable physiological responses of species within the same local community to temperature changes and highlight important potential differences in climate change vulnerability, among species within coastal marine ecosystems.

10.
Sci Rep ; 6: 29623, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27412622

RESUMO

The Eastern Mediterranean Transient (EMT) occurred in the Aegean Sea from 1988 to 1995 and is the most significant intermediate-to-deep Mediterranean overturning perturbation reported by instrumental records. The EMT was likely caused by accumulation of high salinity waters in the Levantine and enhanced heat loss in the Aegean Sea, coupled with surface water freshening in the Sicily Channel. It is still unknown whether similar transients occurred in the past and, if so, what their forcing processes were. In this study, sediments from the Sicily Channel document surface water freshening (SCFR) at 1910 ± 12, 1812 ± 18, 1725 ± 25 and 1580 ± 30 CE. A regional ocean hindcast links SCFR to enhanced deep-water production and in turn to strengthened Mediterranean thermohaline circulation. Independent evidence collected in the Aegean Sea supports this reconstruction, showing that enhanced bottom water ventilation in the Eastern Mediterranean was associated with each SCFR event. Comparison between the records and multi-decadal atmospheric circulation patterns and climatic external forcings indicates that Mediterranean circulation destabilisation occurs during positive North Atlantic Oscillation (NAO) and negative Atlantic Multidecadal Oscillation (AMO) phases, reduced solar activity and strong tropical volcanic eruptions. They may have recurrently produced favourable deep-water formation conditions, both increasing salinity and reducing temperature on multi-decadal time scales.

11.
Mar Pollut Bull ; 60(1): 69-78, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19828156

RESUMO

This contribution presents a method for assessing the risk of water degradation in harbour domains. The method describes a normalized Index of Risk, ranging from 0 to 1, which determines the risk of water degradation due to a pollution event. A branch-decision scheme of decision-making theories was implemented in order to obtain this index. This method evaluates the cost of each decision as a function of the vulnerability, proximity and toxicity of the potential contaminant. A novel feature of this method is that the risk is defined by considering the physical behaviour of the harbour (i.e. water circulation patterns). Regions where water residence time is high are considered more vulnerable to pollutant releases. This method could be implemented from an operational perspective, in which case an oceanographic operational system could be used to obtain current forecasts which in turn would be used to forecast risk maps.


Assuntos
Monitoramento Ambiental/métodos , Geografia , Modelos Teóricos , Água do Mar/análise , Água do Mar/química , Movimentos da Água , Poluentes da Água , Tomada de Decisões , Mar Mediterrâneo , Medição de Risco/métodos , Espanha , Poluentes da Água/análise , Poluentes da Água/toxicidade , Abastecimento de Água/análise , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...