Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627949

RESUMO

The present study investigates a potential method of optimizing effective strategies for the functional lateralization of the dorsolateral prefrontal cortex (dlPFC) while in a scanner. Effective hemisphere lateralization of the dlPFC is crucial for lowering the functional risks connected to specific interventions (such as neurosurgery and transcranial magnetic stimulation (TMS), as well as increasing the effectiveness of a given intervention by figuring out the optimal location. This task combines elements of creative problem solving, executive decision making based on an internal rule set, and working memory. A retrospective analysis was performed on a total of 58 unique participants (34 males, 24 females, Mage = 42.93 years, SDage = 16.38). Of these participants, 47 were classified as right-handed, 7 were classified as left-handed, and 4 were classified as ambidextrous, according to the Edinburgh Handedness Inventory. The imaging data were qualitatively judged by two trained, blinded investigators (neurologist and neuropsychologist) for dominant handedness (primary motor cortex) and dominant dorsolateral prefrontal cortex (dlPFC). The results demonstrated that 21.4% of right-handed individuals showed a dominant dlPFC localized to the right hemisphere rather than the assumed left, and 16.7% of left-handers were dominant in their left hemisphere. The task completed in the scanner might be an efficient method for localizing a potential dlPFC target for the purpose of brain stimulation (e.g., TMS), though further study replications are needed to extend and validate these findings.

2.
J Lasers Med Sci ; 13: e65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37041790

RESUMO

Introduction: This study intended to evaluate the safety and possible therapeutic effect of transcranial infrared laser stimulation (TILS) based on photobiomodulation (PBM) among patients with traumatic brain injury (TBI). Methods: Eleven participants who were diagnosed with TBI after full neurological examination and MRI evaluation by a board-certified neurologist completed five to eight 20-minute TILS sessions using the Cytonsys CytonPro-5000 apparatus (pilot laser control, focused wavelength of 1064 nm, maximum output power of 10W, maximum optical power density of 500 mW/cm2, effective area 4.5 cm2 in diameter). Per TILS session, participants underwent a laser dose of 250 mW/cm2 continuous laser wave to each hemisphere using predetermined patient-specific coordinates. Structural imaging was used to neuronavigate individual treatment targets in the frontal cortex (Brodmann area 10). The primary safety measure for this study was the occurrence of adverse events (AEs) or serious adverse events (SAEs). The primary efficacy outcome measure was the participant-rated global rating of change (GRC) post-intervention. Secondary outcome measures included a battery of neuropsychological testing and mood questionnaires done both pre- and post-intervention. Results: All patients enrolled in this study protocol were able to tolerate the study procedures without any AEs or SAEs. Nine out of eleven participants had clinically significant improvements in GRC score (≥ +2). Neuropsychological testing and mood questionnaire outcomes also suggested a positive therapeutic effect. Conclusion: This study provides preliminary evidence supporting the safety and potential efficacy of TILS as a non-invasive clinical intervention for individuals with TBI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA