Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 15(12): 3253-3261, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33232109

RESUMO

Bacterial hormones, such as the iconic gamma-butyrolactone A-factor, are essential signaling molecules that regulate diverse physiological processes, including specialized metabolism. These low molecular weight compounds are common in Streptomyces species and display species-specific structural differences. Recently, unusual gamma-butyrolactone natural products called salinipostins were isolated from the marine actinomycete genus Salinispora based on their antimalarial properties. As the salinipostins possess a rare phosphotriester motif of unknown biosynthetic origin, we set out to explore its construction by the widely conserved 9-gene spt operon in Salinispora species. We show through a series of in vivo and in vitro studies that the spt gene cluster dually encodes the salinipostins and newly identified natural A-factor-like gamma-butyrolactones (Sal-GBLs). Remarkably, homologous biosynthetic gene clusters are widely distributed among many actinomycete genera, including Streptomyces, suggesting the significance of this operon in bacteria.


Assuntos
4-Butirolactona/metabolismo , Produtos Biológicos/metabolismo , Ésteres/metabolismo , Transdução de Sinais , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Genes Bacterianos , Streptomyces/genética , Streptomyces/metabolismo
2.
ACS Infect Dis ; 6(4): 563-571, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31906623

RESUMO

Streptococcus mutans is a common constituent of dental plaque and a major etiologic agent of dental caries (tooth decay). In this study, we elucidated the biosynthetic pathway encoded by muc, a hybrid polyketide synthase and nonribosomal peptide synthetase (PKS/NRPS) biosynthetic gene cluster (BGC), present in a number of globally distributed S. mutans strains. The natural products synthesized by muc included three N-acyl tetramic acid compounds (reutericyclin and two novel analogues) and an unacylated tetramic acid (mutanocyclin). Furthermore, the enzyme encoded by mucF was identified as a novel class of membrane-associated aminoacylases and was responsible for the deacylation of reutericyclin to mutanocyclin. A large number of hypothetical proteins across a broad diversity of bacteria were homologous to MucF, suggesting that this may represent a large family of unexplored acylases. Finally, S. mutans utilized the reutericyclin produced by muc to impair the growth of neighboring oral commensal bacteria. Since S. mutans must be able to out-compete these health-associated organisms to persist in the oral microbiota and cause disease, the competitive advantage conferred by muc suggests that this BGC is likely to be involved in S. mutans ecology and therefore dental plaque dysbiosis and the resulting caries pathogenesis.


Assuntos
Antibacterianos/metabolismo , Vias Biossintéticas/genética , Microbiota/efeitos dos fármacos , Pirrolidinonas/metabolismo , Streptococcus mutans/metabolismo , Simbiose/efeitos dos fármacos , Antibacterianos/biossíntese , Cárie Dentária/microbiologia , Humanos , Boca/microbiologia , Família Multigênica , Policetídeo Sintases/genética , Streptococcus mutans/genética , Streptococcus mutans/patogenicidade , Ácido Tenuazônico/análogos & derivados , Ácido Tenuazônico/metabolismo
3.
mBio ; 10(3)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088928

RESUMO

Marine sponges are recognized as valuable sources of bioactive metabolites and renowned as petri dishes of the sea, providing specialized niches for many symbiotic microorganisms. Sponges of the family Dysideidae are well documented to be chemically talented, often containing high levels of polyhalogenated compounds, terpenoids, peptides, and other classes of bioactive small molecules. This group of tropical sponges hosts a high abundance of an uncultured filamentous cyanobacterium, Hormoscilla spongeliae Here, we report the comparative genomic analyses of two phylogenetically distinct Hormoscilla populations, which reveal shared deficiencies in essential pathways, hinting at possible reasons for their uncultivable status, as well as differing biosynthetic machinery for the production of specialized metabolites. One symbiont population contains clustered genes for expanded polybrominated diphenylether (PBDE) biosynthesis, while the other instead harbors a unique gene cluster for the biosynthesis of the dysinosin nonribosomal peptides. The hybrid sequencing and assembly approach utilized here allows, for the first time, a comprehensive look into the genomes of these elusive sponge symbionts.IMPORTANCE Natural products provide the inspiration for most clinical drugs. With the rise in antibiotic resistance, it is imperative to discover new sources of chemical diversity. Bacteria living in symbiosis with marine invertebrates have emerged as an untapped source of natural chemistry. While symbiotic bacteria are often recalcitrant to growth in the lab, advances in metagenomic sequencing and assembly now make it possible to access their genetic blueprint. A cell enrichment procedure, combined with a hybrid sequencing and assembly approach, enabled detailed genomic analysis of uncultivated cyanobacterial symbiont populations in two chemically rich tropical marine sponges. These population genomes reveal a wealth of secondary metabolism potential as well as possible reasons for historical difficulties in their cultivation.


Assuntos
Cianobactérias/genética , Metagenômica , Poríferos/microbiologia , Simbiose/genética , Animais , Produtos Biológicos/metabolismo , Cianobactérias/metabolismo , Genômica , Éteres Difenil Halogenados/metabolismo , Indóis/metabolismo , Família Multigênica , Filogenia , Pirróis/metabolismo , Clima Tropical
4.
J Am Chem Soc ; 140(51): 17840-17845, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30525563

RESUMO

The biosynthetic route to the napyradiomycin family of bacterial meroterpenoids has been fully described 32 years following their original isolation and 11 years after their gene cluster discovery. The antimicrobial and cytotoxic natural products napyradiomycins A1 and B1 are produced using three organic substrates (1,3,6,8-tetrahydroxynaphthalene, dimethylallyl pyrophosphate, and geranyl pyrophosphate), and catalysis via five enzymes: two aromatic prenyltransferases (NapT8 and T9); and three vanadium dependent haloperoxidase (VHPO) homologues (NapH1, H3, and H4). Building upon the previous characterization of NapH1, H3, and T8, we herein describe the initial (NapT9, H1) and final (NapH4) steps required for napyradiomycin construction. This remarkably streamlined biosynthesis highlights the utility of VHPO enzymology in complex natural product generation, as NapH4 efficiently performs a unique chloronium-induced terpenoid cyclization to establish two stereocenters and a new carbon-carbon bond, and dual-acting NapH1 catalyzes chlorination and etherification reactions at two distinct stages of the pathway. Moreover, we employed recombinant napyradiomycin biosynthetic enzymes to chemoenzymatically synthesize milligram quantities in one pot in 1 day. This method represents a viable enantioselective approach to produce complex halogenated metabolites, like napyradiomycin B1, that have yet to be chemically synthesized.


Assuntos
Antibacterianos/síntese química , Proteínas de Bactérias/química , Dimetilaliltranstransferase/química , Peroxidases/química , Proteínas de Bactérias/isolamento & purificação , Biocatálise , Dimetilaliltranstransferase/isolamento & purificação , Naftoquinonas/síntese química , Peroxidases/isolamento & purificação , Streptomyces/enzimologia
5.
Cell Chem Biol ; 23(12): 1504-1514, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-27866908

RESUMO

In an era where natural product biosynthetic gene clusters can be rapidly identified from sequenced genomes, it is unusual for the biosynthesis of an entire natural product class to remain unknown. Yet, the genetic determinates for pyrroloquinoline alkaloid biosynthesis have remained obscure despite their abundance and deceptive structural simplicity. In this work, we have identified the biosynthetic gene cluster for ammosamides A-C, pyrroloquinoline alkaloids from Streptomyces sp. CNR-698. Through direct cloning, heterologous expression and gene deletions we have validated the ammosamide biosynthetic gene cluster and demonstrated that these seemingly simple molecules are derived from a surprisingly complex set of biosynthetic genes that are also found in the biosynthesis of lymphostin, a structurally related pyrroloquinoline alkaloid from Salinispora and Streptomyces. Our results implicate a conserved set of genes driving pyrroloquinoline biosynthesis that consist of genes frequently associated with ribosomal peptide natural product biosynthesis, and whose exact biochemical role remains enigmatic.

6.
Biochim Biophys Acta ; 1861(11): 1808-1815, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27600289

RESUMO

Phosphatidylinositol analogs (PIAs) were originally designed to bind competitively to the Akt PH domain and prevent membrane translocation and activation. d-3-Deoxy-dioctanoylphosphatidylinositol (d-3-deoxy-diC8PI), but not compounds with altered inositol stereochemistry (e.g., l-3-deoxy-diC8PI and l-3,5-dideoxy-diC8PI), is cytotoxic. However, high resolution NMR field cycling relaxometry shows that both cytotoxic and non-toxic PIAs bind to the Akt1 PH domain at the site occupied by the cytotoxic alkylphospholipid perifosine. This suggests that another mechanism for cytotoxicity must account for the difference in efficacy of the synthetic short-chain PIAs. In MCF-7 breast cancer cells, with little constitutively active Akt, d-3-deoxy-diC8PI (but not l-compounds) decreases viability concomitant with increased cleavage of PARP and caspase 9, indicative of apoptosis. d-3-Deoxy-diC8PI also induces a decrease in endogenous levels of cyclins D1 and D3 and blocks downstream retinoblastoma protein phosphorylation. siRNA-mediated depletion of cyclin D1, but not cyclin D3, reduces MCF-7 cell proliferation. Thus, growth arrest and cytotoxicity induced by the soluble d-3-deoxy-diC8PI occur by a mechanism that involves downregulation of the D-type cyclin-pRb pathway independent of its interaction with Akt. This ability to downregulate D-type cyclins contributes, at least in part, to the anti-proliferative activity of d-3-deoxy-diC8PI and may be a common feature of other cytotoxic phospholipids.


Assuntos
Neoplasias da Mama/patologia , Ciclina D1/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ácidos Fosfatídicos/farmacologia , Fosfatidilinositóis/farmacologia , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Espectroscopia de Ressonância Magnética , Ácidos Fosfatídicos/química , Fosfatidilinositóis/química , Fosforilação/efeitos dos fármacos , Domínios de Homologia à Plecstrina , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Science ; 335(6069): 694-8, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22267579

RESUMO

Multidentate, noncovalent interactions between small molecules and biopolymer fragments are central to processes ranging from drug action to selective catalysis. We present a versatile and sensitive spectroscopic probe of functional groups engaged in hydrogen bonding in such contexts. This involves measurement of the frequency changes in specific covalent bonds upon complex formation, information drawn from otherwise transient complexes that have been extracted from solution and conformationally frozen near 10 kelvin in gas-phase clusters. Resonances closely associated with individual oscillators are easily identified through site-specific isotopic labeling, as demonstrated by application of the method to an archetypal system involving a synthetic tripeptide known to bind biaryl substrates through tailored hydrogen bonding to catalyze their asymmetric bromination. With such data, calculations readily converge on the plausible operative structures in otherwise computationally prohibitive, high-dimensionality landscapes.


Assuntos
Compostos de Bifenilo/química , Oligopeptídeos/química , Análise Espectral/métodos , Sítios de Ligação , Catálise , Fenômenos Químicos , Congelamento , Gases , Halogenação , Ligação de Hidrogênio , Raios Infravermelhos , Conformação Molecular , Estrutura Molecular , Estereoisomerismo
10.
Biopolymers ; 96(5): 617-26, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22180909

RESUMO

Peptoid oligomers possess many desirable attributes bioactive peptidomimetic agents, including their ease of synthesis, chemical diversity, and capability for molecular recognition. Ongoing efforts to develop functional peptoids will necessitate improved capability for control of peptoid structure, particularly of the backbone amide conformation. We introduce alkoxyamines as a new reagent for solid phase peptoid synthesis. Herein, we describe the synthesis of N-alkoxy peptoids, and present NMR data indicating that the oligomers adopt a single stable conformation featuring trans amide bonds. These findings, combined with results from computational modeling, suggest that N-alkoxy peptoid oligomers have a strong propensity to adopt a polyproline II type secondary structure.


Assuntos
Álcoois/química , Glicina/química , Peptoides , Dicroísmo Circular , Simulação por Computador , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Peptoides/síntese química , Peptoides/química , Conformação Proteica
11.
J Am Chem Soc ; 133(16): 6440-8, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21449591

RESUMO

We present infrared photodissociation spectra of two protonated peptides that are cooled in a ~10 K quadrupole ion trap and "tagged" with weakly bound H(2) molecules. Spectra are recorded over the range of 600-4300 cm(-1) using a table-top laser source, and are shown to result from one-photon absorption events. This arrangement is demonstrated to recover sharp (Δν ~6 cm(-1)) transitions throughout the fingerprint region, despite the very high density of vibrational states in this energy range. The fundamentals associated with all of the signature N-H and C=O stretching bands are completely resolved. To address the site-specificity of the C=O stretches near 1800 cm(-1), we incorporated one (13)C into the tripeptide. The labeling affects only one line in the complex spectrum, indicating that each C=O oscillator contributes a single distinct band, effectively "reporting" its local chemical environment. For both peptides, analysis of the resulting band patterns indicates that only one isomeric form is generated upon cooling the ions initially at room temperature into the H(2) tagging regime.


Assuntos
Hidrogênio/química , Espectrometria de Massas/métodos , Peptídeos/química , Espectrofotometria Infravermelho/métodos , Fotoquímica , Vibração
12.
Proc Natl Acad Sci U S A ; 107(48): 20620-4, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-20439750

RESUMO

Despite the ubiquitous use of phosphoramidite chemistry in the synthesis of biophosphates, catalytic asymmetric phosphoramidite transfer remains largely unexplored for phosphate ester synthesis. We have discovered that a tetrazole-functionalized peptide, in the presence of 10-Å molecular sieves, functions as an enantioselective catalyst for phosphite transfer. This chemistry in turn has been used as the key step in a streamlined synthesis of myo-inositol-6-phosphate. Mechanistic insights implicate phosphate as a directing group for a highly selective kinetic resolution of a protected inositol monophosphate. This work represents a distinct and efficient method for the selective catalytic phosphorylation of natural products.


Assuntos
Biocatálise , Fosfatos de Inositol/química , Fosfatos de Inositol/síntese química , Compostos Organofosforados/metabolismo , Indicadores e Reagentes , Fosfatos de Inositol/metabolismo , Compostos Organofosforados/química , Fosforilação , Estereoisomerismo
13.
Blood ; 112(12): 4523-31, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18772455

RESUMO

Integrin-linked kinase (ILK) has been implicated in the regulation of a range of fundamental biological processes such as cell survival, growth, differentiation, and adhesion. In platelets ILK associates with beta1- and beta3-containing integrins, which are of paramount importance for the function of platelets. Upon stimulation of platelets this association with the integrins is increased and ILK kinase activity is up-regulated, suggesting that ILK may be important for the coordination of platelet responses. In this study a conditional knockout mouse model was developed to examine the role of ILK in platelets. The ILK-deficient mice showed an increased bleeding time and volume, and despite normal ultrastructure the function of ILK-deficient platelets was decreased significantly. This included reduced aggregation, fibrinogen binding, and thrombus formation under arterial flow conditions. Furthermore, although early collagen stimulated signaling such as PLCgamma2 phosphorylation and calcium mobilization were unaffected in ILK-deficient platelets, a selective defect in alpha-granule, but not dense-granule, secretion was observed. These results indicate that as well as involvement in the control of integrin affinity, ILK is required for alpha-granule secretion and therefore may play a central role in the regulation of platelet function.


Assuntos
Plaquetas/enzimologia , Ativação Plaquetária/genética , Proteínas Serina-Treonina Quinases/fisiologia , Vesículas Secretórias/metabolismo , Animais , Plaquetas/metabolismo , Clonagem Molecular , Hemorragia/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agregação Plaquetária/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Trombose/genética
14.
Tetrahedron ; 64(29): 7015-7020, 2008 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19606206

RESUMO

Peptide-based catalysts have been applied to the enantioselective syntheses of the title compounds, with this being the first report of the synthesis of an ent-PI5P analogue. The key steps in the synthesis involve asymmetric phosphorylation catalysis. Additional maneuvers were developed with a protecting groups scheme that enabled efficient, streamlined syntheses of these important mediators of biochemical events.

15.
Antioxid Redox Signal ; 8(3-4): 312-24, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16677077

RESUMO

An emerging concept is that disulfide bonds can act as a dynamic scaffold to present mature proteins in different conformational and functional states on the cell surface. Two examples are the conversion of the receptor, integrin alphaIIbbeta3, from a low affinity to a high affinity state, and the interaction of CD4 receptor with the HIV-1 envelope glycoprotein gp120 to promote virus-cell fusion. In both of these cases there is a remodeling of the protein disulfide bonding pattern. The formation and rearrangement of disulfide bonds is modulated by a family of enzymes known as the thiol isomerases, which include protein disulfide isomerase (PDI), ERp5, ERp57, and ERp72. While these enzymes were reported originally to be restricted in location to the endoplasmic reticulum, in some cells thiol isomerases are found on the cell surface. This may indicate a wider role for these enzymes in cell function. In platelets it has been shown that reagents that react with cell surface sulfhydryl groups are capable of blocking a number of functional responses, including integrin-mediated aggregation, adhesion, and granule secretion. Furthermore, the use of function blocking antibodies to either PDI or ERp5 causes inhibition of these functional responses. This review summarizes current knowledge of the extracellular regulation of disulfide exchange and the implications of this in the regulation of cell function.


Assuntos
Dissulfetos , Animais , Antígenos CD4/biossíntese , Adesão Celular , Fusão Celular , Membrana Celular/metabolismo , Dissulfetos/química , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Humanos , Integrinas/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Estrutura Terciária de Proteína
16.
Can J Vet Res ; 69(1): 32-8, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15745220

RESUMO

The objectives of this study were to estimate the prevalence of Mycobacterium avium subsp. paratuberculosis (MAP) among deer and rabbits surrounding infected and noninfected Minnesota dairy farms using fecal culture, and to describe the frequency that farm management practices were used that could potentially lead to transmission of infection between these species. Fecal samples from cows and the cow environment were collected from 108 Minnesota dairy herds, and fecal pellets from free-ranging white-tailed deer and eastern cottontail rabbits were collected from locations surrounding 114 farms; all samples were tested using bacterial culture. In addition, a questionnaire was administered to 114 herd owners. Sixty-two percent of the dairy herds had at least 1 positive fecal pool or environmental sample. A total of 218 rabbit samples were collected from 90% of the herds, and 309 deer samples were collected from 47% of the herds. On 2 (4%) of the farms sampled, 1 deer fecal sample was MAP positive. Both farms had samples from the cow fecal pool and cow environment that were positive by culture. On 2 (2%) other farms, 1 rabbit fecal sample was positive by culture to MAP, with one of these farms having positive cow fecal pools and cow environmental samples. Pasture was used on 79% of the study farms as a grazing area for cattle, mainly for dry cows (75%) and bred or prebred heifers (87%). Of the 114 farms, 88 (77%) provided access to drylot for their cattle, mainly for milking cows (77/88; 88%) and bred heifers (87%). Of all study farms, 90 (79%) used some solid manure broadcasting on their crop fields. Of all 114 farms, the estimated probability of daily physical contact between cattle manure and deer or rabbits was 20% and 25%, respectively. Possible contact between cattle manure and deer or rabbits was estimated to occur primarily from March through December. The frequency of pasture or drylot use and manure spreading on crop fields may be important risk factors for transmission of MAP among dairy cattle, deer, and rabbits. Although the MAP prevalence among rabbits and deer is low, their role as MAP reservoirs should be considered.


Assuntos
Criação de Animais Domésticos/métodos , Cervos/microbiologia , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/epidemiologia , Coelhos/microbiologia , Animais , Animais Domésticos/microbiologia , Animais Selvagens/microbiologia , Bovinos , Contagem de Colônia Microbiana/veterinária , Reservatórios de Doenças/veterinária , Fezes/microbiologia , Feminino , Minnesota/epidemiologia , Paratuberculose/transmissão , Poaceae , Prevalência , Inquéritos e Questionários
17.
Blood ; 105(4): 1500-7, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15466936

RESUMO

Formation and rearrangement of disulfide bonds during the correct folding of nascent proteins is modulated by a family of enzymes known as thiol isomerases, which include protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERP5), and ERP57. Recent evidence supports an alternative role for this family of proteins on the surface of cells, where they are involved in receptor remodeling and recognition. In platelets, blocking PDI with inhibitory antibodies inhibits a number of platelet activation pathways, including aggregation, secretion, and fibrinogen binding. Analysis of human platelet membrane fractions identified the presence of the thiol isomerase protein ERP5. Further study showed that ERP5 is resident mainly on platelet intracellular membranes, although it is rapidly recruited to the cell surface in response to a range of platelet agonists. Blocking cell-surface ERP5 using inhibitory antibodies leads to a decrease in platelet aggregation in response to agonists, and a decrease in fibrinogen binding and P-selectin exposure. It is possible that this is based on the disruption of integrin function, as we observed that ERP5 becomes physically associated with the integrin beta(3) subunit during platelet stimulation. These results provide new insights into the involvement of thiol isomerases and regulation of platelet activation.


Assuntos
Plaquetas/enzimologia , Plaquetas/fisiologia , Isomerases de Dissulfetos de Proteínas/fisiologia , Sequência de Aminoácidos , Anticorpos Bloqueadores/farmacologia , Membrana Celular/enzimologia , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/metabolismo , Fibrinogênio/metabolismo , Humanos , Integrina beta3/metabolismo , Líquido Intracelular/enzimologia , Dados de Sequência Molecular , Selectina-P/metabolismo , Ativação Plaquetária/fisiologia , Inibidores da Agregação Plaquetária/farmacologia , Ligação Proteica/fisiologia , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/imunologia , Isomerases de Dissulfetos de Proteínas/isolamento & purificação , Isomerases de Dissulfetos de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...