Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(7): e0285432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37437022

RESUMO

Existing magnetic resonance imaging (MRI) reference objects, or phantoms, are typically constructed from simple liquid or gel solutions in containers with specific geometric configurations to enable multi-year stability. However, there is a need for phantoms that better mimic the human anatomy without barriers between the tissues. Barriers result in regions without MRI signal between the different tissue mimics, which is an artificial image artifact. We created an anatomically representative 3D structure of the brain that mimicked the T1 and T2 relaxation properties of white and gray matter at 3 T. While the goal was to avoid barriers between tissues, the 3D printed barrier between white and gray matter and other flaws in the construction were visible at 3 T. Stability measurements were made using a portable MRI system operating at 64 mT, and T2 relaxation time was stable from 0 to 22 weeks. The phantom T1 relaxation properties did change from 0 to 10 weeks; however, they did not substantially change between 10 weeks and 22 weeks. The anthropomorphic phantom used a dissolvable mold construction method to better mimic anatomy, which worked in small test objects. The construction process, though, had many challenges. We share this work with the hope that the community can build on our experience.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Substância Cinzenta/diagnóstico por imagem , Espectroscopia de Ressonância Magnética
2.
Sci Rep ; 13(1): 11520, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460669

RESUMO

We have investigated the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs) as positive T1 contrast agents for low-field magnetic resonance imaging (MRI) at 64 millitesla (mT). Iron oxide-based agents, such as the FDA-approved ferumoxytol, were measured using a variety of techniques to evaluate T1 contrast at 64 mT. Additionally, we characterized monodispersed carboxylic acid-coated SPIONs with a range of diameters (4.9-15.7 nm) in order to understand size-dependent properties of T1 contrast at low-field. MRI contrast properties were measured using 64 mT MRI, magnetometry, and nuclear magnetic resonance dispersion (NMRD). We also measured MRI contrast at 3 T to provide comparison to a standard clinical field strength. SPIONs have the capacity to perform well as T1 contrast agents at 64 mT, with measured longitudinal relaxivity (r1) values of up to 67 L mmol-1 s-1, more than an order of magnitude higher than corresponding r1 values at 3 T. The particles exhibit size-dependent longitudinal relaxivities and outperform a commercial Gd-based agent (gadobenate dimeglumine) by more than eight-fold at physiological temperatures. Additionally, we characterize the ratio of transverse to longitudinal relaxivity, r2/r1 and find that it is ~ 1 for the SPION based agents at 64 mT, indicating a favorable balance of relaxivities for T1-weighted contrast imaging. We also correlate the magnetic and structural properties of the particles with models of nanoparticle relaxivity to understand generation of T1 contrast. These experiments show that SPIONs, at low fields being targeted for point-of-care low-field MRI systems, have a unique combination of magnetic and structural properties that produce large T1 relaxivities.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Meios de Contraste/química , Nanopartículas de Magnetita/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Nanopartículas Magnéticas de Óxido de Ferro
3.
MAGMA ; 36(3): 487-498, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37208553

RESUMO

OBJECTIVE: To measure healthy brain [Formula: see text] and [Formula: see text] relaxation times at 0.064 T. MATERIALS AND METHODS: [Formula: see text] and [Formula: see text] relaxation times were measured in vivo for 10 healthy volunteers using a 0.064 T magnetic resonance imaging (MRI) system and for 10 test samples on both the MRI and a separate 0.064 T nuclear magnetic resonance (NMR) system. In vivo [Formula: see text] and [Formula: see text] values are reported for white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) for automatic segmentation regions and manual regions of interest (ROIs). RESULTS: [Formula: see text] sample measurements on the MRI system were within 10% of the NMR measurement for 9 samples, and one sample was within 11%. Eight [Formula: see text] sample MRI measurements were within 25% of the NMR measurement, and the two longest [Formula: see text] samples had more than 25% variation. Automatic segmentations generally resulted in larger [Formula: see text] and [Formula: see text] estimates than manual ROIs. DISCUSSION: [Formula: see text] and [Formula: see text] times for brain tissue were measured at 0.064 T. Test samples demonstrated accuracy in WM and GM ranges of values but underestimated long [Formula: see text] in the CSF range. This work contributes to measuring quantitative MRI properties of the human body at a range of field strengths.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Espectroscopia de Ressonância Magnética , Substância Cinzenta/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
4.
MAGMA ; 36(3): 477-485, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209233

RESUMO

OBJECTIVE: Temperature controlled T1 and T2 relaxation times are measured on NiCl2 and MnCl2 solutions from the ISMRM/NIST system phantom at low magnetic field strengths of 6.5 mT, 64 mT and 550 mT. MATERIALS AND METHODS: The T1 and T2 were measured of five samples with increasing concentrations of NiCl2 and five samples with increasing concentrations of MnCl2. All samples were scanned at 6.5 mT, 64 mT and 550 mT, at sample temperatures ranging from 10 °C to 37 °C. RESULTS: The NiCl2 solutions showed little change in T1 and T2 with magnetic field strength, and both relaxation times decreased with increasing temperature. The MnCl2 solutions showed an increase in T1 and a decrease in T2 with increasing magnetic field strength, and both T1 and T2 increased with increasing temperature. DISCUSSION: The low field relaxation rates of the NiCl2 and MnCl2 arrays in the ISMRM/NIST system phantom are investigated and compared to results from clinical field strengths of 1.5 T and 3.0 T. The measurements can be used as a benchmark for MRI system functionality and stability, especially when MRI systems are taken out of the radiology suite or laboratory and into less traditional environments.


Assuntos
Benchmarking , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Campos Magnéticos
5.
Med Phys ; 49(4): 2820-2835, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34455593

RESUMO

Image quantitation methods including quantitative MRI, multiparametric MRI, and radiomics offer great promise for clinical use. However, many of these methods have limited clinical adoption, in part due to issues of generalizability, that is, the ability to translate methods and models across institutions. Researchers can assess generalizability through measurement of repeatability and reproducibility, thus quantifying different aspects of measurement variance. In this article, we review the challenges to ensuring repeatability and reproducibility of image quantitation methods as well as present strategies to minimize their variance to enable wider clinical implementation. We present possible solutions for achieving clinically acceptable performance of image quantitation methods and briefly discuss the impact of minimizing variance and achieving generalizability towards clinical implementation and adoption.


Assuntos
Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética Multiparamétrica , Reprodutibilidade dos Testes
6.
Magn Reson Med ; 77(1): 229-236, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26778689

RESUMO

PURPOSE: We propose a method to acquire B1 distribution plots by encoding in B1 instead of image space. Using this method, B1 data is acquired in a different way from traditional spatial B1 mapping, and allows for quick measurement of high dynamic range B1 data. METHODS: To encode in B1, we acquire multiple projections of a slice, each along the same direction, but using a different phase sensitivity to B1. Using a convex optimization formulation, we reconstruct histograms of the B1 distribution estimates of the slice. RESULTS: We verify in vivo B1 distribution measurements by comparing measured distributions to distributions calculated from reference spatial B1 maps using the Earth Mover's Distance. Phantom measurements using a surface coil show that for increased spatial B1 variations, measured B1 distributions using the proposed method more accurately estimate the distribution than a low-resolution spatial B1 map, resulting in a 37% Earth Mover's Distance decrease while using fewer measurements. CONCLUSION: We propose and validate the performance of a method to acquire B1 distribution information directly without acquiring a spatial B1 map. The method may provide faster estimates of a B1 field for applications that do not require spatial B1 localization, such as the transmit gain calibration of the scanner, particularly for high dynamic B1 ranges. Magn Reson Med 77:229-236, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Humanos , Imagens de Fantasmas
7.
Magn Reson Med ; 75(3): 1262-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25846905

RESUMO

PURPOSE: Accurate measurement of the nonuniform transmit radiofrequency field is necessary for magnetic resonance imaging applications. The radiofrequency field excitation amplitude (B1) is often obtained by acquiring a B1 map. We modify the B1 estimation using adiabatic refocusing (BEAR) method to extend its range to lower B1 magnitudes. THEORY AND METHODS: The BEAR method is a phase-based B1 mapping method, wherein hyperbolic secant pulses induce a phase sensitivity to B1. The measurable B1 range is limited due to the adiabatic threshold of the pulses. We redesign the method to use flattened hyperbolic secant pulses, which have lower adiabatic thresholds. We optimize the flattened hyperbolic secant parameters to minimize phase sensitivity to frequency variations. RESULTS: We validate the performance of the new method via simulation and in vivo at 3T, and show that for n ≤ 8, accurate B1 maps can be acquired using reduced nominal peak B1 values. CONCLUSION: The adiabatic threshold for the BEAR method is reduced with flattened hyperbolic secant pulses, which are optimized for accurate phase-to-B1 mapping over a frequency range, and allow for lower nominal B1 values. At 3T, the nominal B1 is decreased by 52% and the sensitivity to B1 is increased by a factor of 3.8. This can improve the method's applicability for measurement of low B1.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Encéfalo/diagnóstico por imagem , Humanos , Imagens de Fantasmas
8.
Magn Reson Med ; 72(5): 1302-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24272817

RESUMO

PURPOSE: Accurate measurement of the nonuniform transmit radiofrequency field is useful for many applications in magnetic resonance imaging, such as calibrating the scanner transmit system, evaluating coil performance, and improving image quality and quantitation. The radiofrequency field excitation amplitude (B(1)) is often obtained by acquiring a B(1) map. In this study, a new B(1) mapping method is proposed. THEORY AND METHODS: The use of two adiabatic full passage pulses with different magnitudes applied as successive refocusing pulses results in a linear relationship between phase and B(1) field strength that is insensitive to the repetition time, off-resonance effects, T(1), and T(2). Using this method, B(1) mapping can be localized to a slice or three-dimensional (3D) volume, with a spin-echo acquisition that is appropriate for fast projection measurements. RESULTS: This new method is shown to agree well with the Bloch-Siegert B(1) mapping method for both phantom and in vivo B(1) measurements at 1.5T, 3T, and 7T. The method's ability to acquire accurate projection B(1) measurements is also demonstrated. CONCLUSION: This method's high dynamic range, ability to make fast projection measurements, and linear quantitative relationship between phase and B1 make it an ideal candidate for use in robust transmitter gain calibration.


Assuntos
Mapeamento Encefálico/métodos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Simulação por Computador , Humanos , Imageamento Tridimensional , Imagens de Fantasmas , Sensibilidade e Especificidade , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...