Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 12(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36573710

RESUMO

Maturity-Onset Diabetes of the Young (MODY) is a rare form of diabetes which affects between 1% and 5% of diagnosed diabetes cases. Clinical characterizations of MODY include onset of diabetes at an early age (before the age of 30), autosomal dominant inheritance pattern, impaired glucose-induced secretion of insulin, and hyperglycemia. Presently, 14 MODY subtypes have been identified. Within these subtypes are several mutations which contribute to the different MODY phenotypes. Despite the identification of these 14 subtypes, MODY is often misdiagnosed as type 1 or type 2 diabetes mellitus due to an overlap in clinical features, high cost and limited availability of genetic testing, and unfamiliarity with MODY outside of the medical profession. The primary aim of this review is to investigate the genetic characterization of the MODY subtypes. Additionally, this review will elucidate the link between the genetics, function, and clinical manifestations of MODY in each of the 14 subtypes. In providing this knowledge, we hope to assist in the accurate diagnosis of MODY patients and, subsequently, in ensuring they receive appropriate treatment.

2.
PLoS One ; 17(5): e0261743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35560163

RESUMO

Subepithelial platelet-derived growth factor receptor alpha (PDGFRα)+ cells found in the colonic mucosal tissue come in close contact with epithelial cells, immune cells, neurons, capillaries, and lymphatic networks. Mucosal subepithelial PDGFRα+ cells (MuPαC) are important regulators in various intestinal diseases including fibrosis and inflammation. However, the transcriptome of MuPαC has not yet been elucidated. Using Pdgfra-eGFP mice and flow cytometry, we isolated colonic MuPαC and obtained their transcriptome data. In analyzing the transcriptome, we identified three novel, and selectively expressed, markers (Adamdec1, Fin1, and Col6a4) found in MuPαC. In addition, we identified a unique set of MuPαC-enriched genetic signatures including groups of growth factors, transcription factors, gap junction proteins, extracellular proteins, receptors, cytokines, protein kinases, phosphatases, and peptidases. These selective groups of genetic signatures are linked to the unique cellular identity and function of MuPαC. Furthermore, we have added this MuPαC transcriptome data to our Smooth Muscle Genome Browser that contains the transcriptome data of jejunal and colonic smooth muscle cells (SMC), interstitial cells of Cajal (ICC), and smooth muscle resident PDGFRα+ cells: (https://med.unr.edu/physio/transcriptome). This online resource provides a comprehensive reference of all currently known genetic transcripts expressed in primary MuPαC in the colon along with smooth muscle resident PDGFRα cells, SMC, and ICC in the murine colon and jejunum.


Assuntos
Células Intersticiais de Cajal , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Animais , Biomarcadores/metabolismo , Colo/metabolismo , Perfilação da Expressão Gênica , Células Intersticiais de Cajal/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
3.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563399

RESUMO

Metalloendopeptidase ADAM-Like Decysin 1 (ADAMDEC1) is an anti-inflammatory peptidase that is almost exclusively expressed in the gastrointestinal (GI) tract. We have recently found abundant and selective expression of Adamdec1 in colonic mucosal PDGFRα+ cells. However, the cellular origin for this gene expression is controversial as it is also known to be expressed in intestinal macrophages. We found that Adamdec1 mRNAs were selectively expressed in colonic mucosal subepithelial PDGFRα+ cells. ADAMDEC1 protein was mainly released from PDGFRα+ cells and accumulated in the mucosal layer lamina propria space near the epithelial basement membrane. PDGFRα+ cells significantly overexpressed Adamdec1 mRNAs and protein in DSS-induced colitis mice. Adamdec1 was predominantly expressed in CD45- PDGFRα+ cells in DSS-induced colitis mice, with only minimal expression in CD45+ CD64+ macrophages. Additionally, overexpression of both ADAMDEC1 mRNA and protein was consistently observed in PDGFRα+ cells, but not in CD64+ macrophages found in human colonic mucosal tissue affected by Crohn's disease. In summary, PDGFRα+ cells selectively express ADAMDEC1, which is localized to the colon mucosa layer. ADAMDEC1 expression significantly increases in DSS-induced colitis affected mice and Crohn's disease affected human tissue, suggesting that this gene can serve as a diagnostic and/or therapeutic target for intestinal inflammation and Crohn's disease.


Assuntos
Proteínas ADAM , Colite , Doença de Crohn , Doenças Inflamatórias Intestinais , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Animais , Biomarcadores , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colo/citologia , Colo/metabolismo , Doença de Crohn/metabolismo , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
4.
Aging Cell ; 21(2): e13560, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35102684

RESUMO

Accumulation of circular RNAs (circRNAs) during aging occurs on a genome-wide level for multiple organisms, but its significance is unknown. Generating circRNA loss-of-function mutants is difficult because the vast majority of these RNAs are comprised of exons shared with protein-coding mRNAs. In Caenorhabditis elegans, most circRNAs were previously found to accumulate during aging. Two of the most abundant, age-accumulating circRNAs are generated from exon 4 of the crh-1 gene (circ-crh-1). Here, we found that the biogenesis of circ-crh-1 was regulated by the double-stranded RNA-binding protein ADR-1. We identified Reverse Complementary Match (RCM) sequences in introns flanking circ-crh-1. Using CRISPR-Cas9, we deleted the downstream RCM and found that this completely eliminated expression of the circRNA without affecting linear mRNA expression from the crh-1 gene. Remarkably, worms lacking circ-crh-1 exhibited a significantly longer mean lifespan. Lifespan was partially restored to wild type by expression of circ-crh-1 in neural tissues. Widespread transcriptome alterations in circ-crh-1 mutants were identified using RNA-Seq. Moving forward, intronic RCM deletion using CRISPR should be a widely applicable method to identify lifespan-regulating circRNAs in C. elegans.


Assuntos
Adenosina Desaminase , Proteínas de Caenorhabditis elegans , RNA Circular , Fatores de Transcrição , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , RNA/metabolismo , RNA Circular/genética , Fatores de Transcrição/metabolismo , Transcriptoma
5.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216281

RESUMO

The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Animais , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Redes Reguladoras de Genes , Mamíferos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética
6.
Gastroenterology ; 160(7): 2451-2466.e19, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662386

RESUMO

BACKGROUND & AIMS: Gastrointestinal (GI) motility is regulated by serotonin (5-hydroxytryptamine [5-HT]), which is primarily produced by enterochromaffin (EC) cells in the GI tract. However, the precise roles of EC cell-derived 5-HT in regulating gastric motility remain a major point of conjecture. Using a novel transgenic mouse line, we investigated the distribution of EC cells and the pathophysiologic roles of 5-HT deficiency in gastric motility in mice and humans. METHODS: We developed an inducible, EC cell-specific Tph1CreERT2/+ mouse, which was used to generate a reporter mouse line, Tph1-tdTom, and an EC cell-depleted line, Tph1-DTA. We examined EC cell distribution, morphology, and subpopulations in reporter mice. GI motility was measured in vivo and ex vivo in EC cell-depleted mice. Additionally, we evaluated 5-HT content in biopsy and plasma specimens from patients with idiopathic gastroparesis (IG). RESULTS: Tph1-tdTom mice showed EC cells that were heterogeneously distributed throughout the GI tract with the greatest abundance in the antrum and proximal colon. Two subpopulations of EC cells were identified in the gut: self-renewal cells located at the base of the crypt and mature cells observed in the villi. Tph1-DTA mice displayed delayed gastric emptying, total GI transit, and colonic transit. These gut motility alterations were reversed by exogenous provision of 5-HT. Patients with IG had a significant reduction of antral EC cell numbers and 5-HT content, which negatively correlated with gastric emptying rate. CONCLUSIONS: The Tph1CreERT2/+ mouse provides a powerful tool to study the functional roles of EC cells in the GI tract. Our findings suggest a new pathophysiologic mechanism of 5-HT deficiency in IG.


Assuntos
Esvaziamento Gástrico/genética , Trânsito Gastrointestinal/genética , Serotonina/deficiência , Animais , Linhagem Celular , Células Enterocromafins/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Triptofano Hidroxilase/metabolismo
7.
Gastroenterology ; 160(5): 1662-1678.e18, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421511

RESUMO

BACKGROUND & AIMS: Interstitial cells of Cajal (ICCs) and pancreatic ß cells require receptor tyrosine kinase (KIT) to develop and function properly. Degeneration of ICCs is linked to diabetic gastroparesis. The mechanisms linking diabetes and gastroparesis are unclear, but may involve microRNA (miRNA)-mediated post-transcriptional gene silencing in KIT+ cells. METHODS: We performed miRNA-sequencing analysis from isolated ICCs in diabetic mice and plasma from patients with idiopathic and diabetic gastroparesis. miR-10b-5p target genes were identified and validated in mouse and human cell lines. For loss-of-function studies, we used KIT+ cell-restricted mir-10b knockout mice and KIT+ cell depletion mice. For gain-of-function studies, a synthetic miR-10b-5p mimic was injected in multiple diabetic mouse models. We compared the efficacy of miR-10b-5p mimic treatment vs antidiabetic and prokinetic medicines. RESULTS: miR-10b-5p is highly expressed in ICCs from healthy mice, but drastically depleted in ICCs from diabetic mice. A conditional knockout of mir-10b in KIT+ cells or depletion of KIT+ cells in mice leads to degeneration of ß cells and ICCs, resulting in diabetes and gastroparesis. miR-10b-5p targets the transcription factor Krüppel-like factor 11 (KLF11), which negatively regulates KIT expression. The miR-10b-5p mimic or Klf11 small interfering RNAs injected into mir-10b knockout mice, diet-induced diabetic mice, and TALLYHO polygenic diabetic mice rescue the diabetes and gastroparesis phenotype for an extended period of time. Furthermore, the miR-10b-5p mimic is more effective in improving glucose homoeostasis and gastrointestinal motility compared with common antidiabetic and prokinetic medications. CONCLUSIONS: miR-10b-5p is a key regulator in diabetes and gastrointestinal dysmotility via the KLF11-KIT pathway. Restoration of miR-10b-5p may provide therapeutic benefits for these disorders.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus/prevenção & controle , Esvaziamento Gástrico , Trânsito Gastrointestinal , Gastroparesia/prevenção & controle , Células Secretoras de Insulina/metabolismo , Células Intersticiais de Cajal/metabolismo , MicroRNAs/metabolismo , Adulto , Idoso , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Feminino , Gastroparesia/genética , Gastroparesia/metabolismo , Gastroparesia/fisiopatologia , Células HEK293 , Humanos , Células Secretoras de Insulina/patologia , Células Intersticiais de Cajal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Pessoa de Meia-Idade , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Adulto Jovem
8.
J Neurogastroenterol Motil ; 25(3): 377-386, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31327220

RESUMO

The mammalian intestine contains many different cell types but is comprised of 2 main cell types: epithelial cells and smooth muscle cells. Recent in vivo and in vitro evidence has revealed that various alterations to the DNA methylation apparatus within both of these cell types can result in a variety of cellular phenotypes including modified differentiation status, apoptosis, and uncontrolled growth. Methyl groups added to cytosines in regulatory genomic regions typically act to repress associated gene transcription. Aberrant DNA methylation patterns are often found in cells with abnormal growth/differentiation patterns, including those cells involved in burdensome intestinal pathologies including inflammatory bowel diseases and intestinal pseudo-obstructions. The altered methylation patterns being observed in various cell cultures and DNA methyltransferase knockout models indicate an influential connection between DNA methylation and gastrointestinal cells' development and their response to environmental signaling. As these modified DNA methylation levels are found in a number of pathological gastrointestinal conditions, further investigations into uncovering the causative nature, and controlled regulation, of this epigenetic modification is of great interest.

9.
Sci Rep ; 9(1): 387, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674925

RESUMO

Transcriptome data on the quantitative numbers of transcriptional variants expressed in primary cells offer essential clues into specific cellular functions and biological processes. We have previously collected transcriptomes from primary smooth muscle cells (SMC), interstitial cells of Cajal (ICC), and PDGFRα+ cells (fibroblast-like cells) isolated from murine jejunal and colonic smooth muscle and/or mucosal tissues as well as transcriptomes from the associated tissues (jejunal smooth muscle, colonic smooth muscle, and colonic mucosa). In this study, we have built the Smooth Muscle Transcriptome Browser (SMTB), https://med.unr.edu/physio/transcriptome , a web-based, graphical user interface that offers genetic references and expression profiles of all transcripts expressed at both the cellular (SMC, ICC, and PDGFRα+ cells) and tissue level (smooth muscle and mucosal tissue). This browser brings new insights into the cellular and biological functions of the cell types in gastrointestinal smooth muscle biology.


Assuntos
Colo/metabolismo , Perfilação da Expressão Gênica , Células Intersticiais de Cajal/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Software , Transcriptoma , Animais , Camundongos
10.
Cell Death Dis ; 9(5): 474, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29700293

RESUMO

DNA methylation is a key epigenetic modification that can regulate gene expression. Genomic DNA hypomethylation is commonly found in many gastrointestinal (GI) diseases. Dysregulated gene expression in GI smooth muscle cells (GI-SMCs) can lead to motility disorders. However, the consequences of genomic DNA hypomethylation within GI-SMCs are still elusive. Utilizing a Cre-lox murine model, we have generated SMC-restricted DNA methyltransferase 1 (Dnmt1) knockout (KO) mice and analyzed the effects of Dnmt1 deficiency. Dnmt1-KO pups are born smaller than their wild-type littermates, have shortened GI tracts, and lose peristaltic movement due to loss of the tunica muscularis in their intestine, causing massive intestinal dilation, and death around postnatal day 21. Within smooth muscle tissue, significant CpG hypomethylation occurs across the genome at promoters, introns, and exons. Additionally, there is a marked loss of differentiated SMC markers (Srf, Myh11, miR-133, miR-143/145), an increase in pro-apoptotic markers (Nr4a1, Gadd45g), loss of cellular connectivity, and an accumulation of coated vesicles within SMC. Interestingly, we observed consistent abnormal expression patterns of enzymes involved in DNA methylation between both Dnmt1-KO mice and diseased human GI tissue. These data demonstrate that DNA hypomethylation in embryonic SMC, via congenital Dnmt1 deficiency, contributes to massive dysregulation of gene expression and is lethal to GI-SMC. These results suggest that Dnmt1 has a necessary role in the embryonic, primary development process of SMC with consistent patterns being found in human GI diseased tissue.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Gastroenteropatias/embriologia , Miócitos de Músculo Liso/enzimologia , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Gastroenteropatias/genética , Gastroenteropatias/patologia , Humanos , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/patologia
11.
J Vis Exp ; (133)2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29553517

RESUMO

Intestinal obstructions, that impede or block peristaltic movement, can be caused by abdominal adhesions and most gastrointestinal (GI) diseases including tumorous growths. However, the cellular remodeling mechanisms involved in, and caused by, intestinal obstructions are poorly understood. Several animal models of intestinal obstructions have been developed, but the mouse model is the most cost/time effective. The mouse model uses the surgical implantation of an intestinal partial obstruction (PO) that has a high mortality rate if it is not performed correctly. In addition, mice receiving PO surgery fail to develop hypertrophy if an appropriate blockade is not used or not properly placed. Here, we describe a detailed protocol for PO surgery which produces reliable and reproducible intestinal obstructions with a very low mortality rate. This protocol utilizes a surgically placed silicone ring that surrounds the ileum which partially blocks digestive movement in the small intestine. The partial blockage makes the intestine become dilated due to the halt of digestive movement. The dilation of the intestine induces smooth muscle hypertrophy on the oral side of the ring that progressively develops over 2 weeks until it causes death. The surgical PO mouse model offers an in vivo model of hypertrophic intestinal tissue useful for studying pathological changes of intestinal cells including smooth muscle cells (SMC), interstitial cells of Cajal (ICC), PDGFRα+, and neuronal cells during the development of intestinal obstruction.


Assuntos
Obstrução Intestinal/diagnóstico , Animais , Modelos Animais de Doenças , Obstrução Intestinal/patologia , Camundongos
12.
PLoS One ; 12(8): e0182265, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28806761

RESUMO

Platelet-derived growth factor receptor alpha (PDGFRα)+ cells are distributed into distinct morphological groups within the serosal, muscular, and submucosal layers as well as the myenteric and deep muscular plexi. PDGFRα+ cells directly interact with interstitial cells of Cajal (ICC) and smooth muscle cells (SMC) in gastrointestinal smooth muscle tissue. These three cell types, SMC, ICC, and PDGFRα+ cells (SIP cells), form an electrical syncytium, which dynamically regulates gastrointestinal motility. We have previously reported the transcriptomes of SMC and ICC. To complete the SIP cell transcriptome project, we obtained transcriptome data from jejunal and colonic PDGFRα+ cells. The PDGFRα+ cell transcriptome data were added to the Smooth Muscle Genome Browser that we previously built for the genome-scale gene expression data of ICC and SMC. This browser provides a comprehensive reference for all transcripts expressed in SIP cells. By analyzing the transcriptomes, we have identified a unique set of PDGFRα+ cell signature genes, growth factors, transcription factors, epigenetic enzymes/regulators, receptors, protein kinases/phosphatases, and ion channels/transporters. We demonstrated that the low voltage-dependent T-type Ca2+ channel Cacna1g gene was particularly expressed in PDGFRα+ cells in the intestinal serosal layer in mice. Expression of this gene was significantly induced in the hyperplasic PDGFRα+ cells of obstructed small intestine in mice. This gene was also over-expressed in colorectal cancer, Crohn's disease, and diverticulitis in human patients. Taken together, our data suggest that Cacna1g exclusively expressed in serosal PDGFRα+ cells is a new pathological marker for gastrointestinal diseases.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Perfilação da Expressão Gênica , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Canais de Cálcio Tipo T/genética , Desdiferenciação Celular , Proliferação de Células/genética , Separação Celular , Regulação da Expressão Gênica , Genoma , Humanos , Hiperplasia , Hipertrofia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Jejuno/metabolismo , Camundongos , Músculo Liso/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
PLoS One ; 12(4): e0176031, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426719

RESUMO

Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC), which serve as slow-wave electrical pacemakers for gastrointestinal (GI) smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome) based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies.


Assuntos
Células Intersticiais de Cajal/metabolismo , Transcriptoma , Sequência de Aminoácidos , Animais , Colo/citologia , Colo/metabolismo , Citometria de Fluxo , Canais Iônicos/química , Canais Iônicos/metabolismo , Jejuno/citologia , Jejuno/metabolismo , Camundongos , Homologia de Sequência de Aminoácidos
14.
PLoS One ; 12(2): e0171262, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28152551

RESUMO

Serum response factor (SRF) transcriptionally regulates expression of contractile genes in smooth muscle cells (SMC). Lack or decrease of SRF is directly linked to a phenotypic change of SMC, leading to hypomotility of smooth muscle in the gastrointestinal (GI) tract. However, the molecular mechanism behind SRF-induced hypomotility in GI smooth muscle is largely unknown. We describe here how SRF plays a functional role in the regulation of the SMC contractility via myotonic dystrophy protein kinase (DMPK) and L-type calcium channel CACNA1C. GI SMC expressed Dmpk and Cacna1c genes into multiple alternative transcriptional isoforms. Deficiency of SRF in SMC of Srf knockout (KO) mice led to reduction of SRF-dependent DMPK, which down-regulated the expression of CACNA1C. Reduction of CACNA1C in KO SMC not only decreased intracellular Ca2+ spikes but also disrupted their coupling between cells resulting in decreased contractility. The role of SRF in the regulation of SMC phenotype and function provides new insight into how SMC lose their contractility leading to hypomotility in pathophysiological conditions within the GI tract.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Miotonina Proteína Quinase/fisiologia , Fator de Resposta Sérica/fisiologia , Animais , Western Blotting , Feminino , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/ultraestrutura , Reação em Cadeia da Polimerase , Proteômica , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...