Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(5): 3648-3657, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558430

RESUMO

BACKGROUND: X-ray multi-contrast imaging with gratings provides a practical method to detect differential phase and dark-field contrast images in addition to the x-ray absorption image traditionally obtained in laboratory or hospital environments. Systems have been developed for preclinical applications in areas including breast imaging, lung imaging, rheumatoid arthritis hand imaging and kidney stone imaging. PURPOSE: Prevailing x-ray interferometers for multi-contrast imaging include Talbot-Lau interferometers and universal moiré effect-based phase-grating interferometers. Talbot-Lau interferometers suffer from conflict between high interferometer sensitivity and large field of view (FOV) of the object being imaged. A small period analyzer grating is necessary to simultaneously achieve high sensitivity and large FOV within a compact imaging system but is technically challenging to produce for high x-ray energies. Phase-grating interferometers suffer from an intrinsic fringe period ranging from a few micrometers to several hundred micrometers that can hardly be resolved by large area flat panel x-ray detectors. The purpose of this work is to introduce a four-grating x-ray interferometer that simultaneously allows high sensitivity and large FOV, without the need for a small period analyzer grating. METHODS: The four-grating interferometer consists of a source grating placed downstream of and close to the x-ray source, a pair of phase gratings separated by a fixed distance placed downstream of the source grating, and an analyzer grating placed upstream of and close to the x-ray detector. The object to be imaged is placed upstream of and close to the phase-grating pair. The distance between the source grating and the phase-grating pair is designed to be far larger than that between the phase-grating pair and the analyzer grating to promote simultaneously high sensitivity and large FOV. The method was evaluated by constructing a four-grating interferometer with an 8 µm period source grating, a pair of phase gratings of 2.4 µm period, and an 8 µm period analyzer grating. RESULTS: The fringe visibility of the four-grating interferometer was measured to be ≈24% at 40 kV and ≈18% at 50 kV x-ray tube operating voltage. A quartz bead of 6 mm diameter was imaged to compare the theoretical and experimental phase contrast signal with good agreement. Kidney stone specimens were imaged to demonstrate the potential of such a system for classification of kidney stones. CONCLUSIONS: The proposed four-grating interferometer geometry enables a compact x-ray multi-contrast imaging system with simultaneously high sensitivity and large FOV. Relaxation of the requirement for a small period analyzer grating makes it particularly suitable for high x-ray energy applications such as abdomen and chest imaging.


Assuntos
Interferometria , Interferometria/instrumentação , Raios X , Desenho de Equipamento
2.
Sci Rep ; 14(1): 384, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172504

RESUMO

The multi-scale characterization of building materials is necessary to understand complex mechanical processes, with the goal of developing new more sustainable materials. To that end, imaging methods are often used in materials science to characterize the microscale. However, these methods compromise the volume of interest to achieve a higher resolution. Dark-field (DF) contrast imaging is being investigated to characterize building materials in length scales smaller than the resolution of the imaging system, allowing a direct comparison of features in the nano-scale range and overcoming the scale limitations of the established characterization methods. This work extends the implementation of a dual-phase X-ray grating interferometer (DP-XGI) for DF imaging in a lab-based setup. The interferometer was developed to operate at two different design energies of 22.0 keV and 40.8 keV and was designed to characterize nanoscale-size features in millimeter-sized material samples. The good performance of the interferometer in the low energy range (LER) is demonstrated by the DF retrieval of natural wood samples. In addition, a high energy range (HER) configuration is proposed, resulting in higher mean visibility and good sensitivity over a wider range of correlation lengths in the nanoscale range. Its potential for the characterization of mineral building materials is illustrated by the DF imaging of a Ketton limestone. Additionally, the capability of the DP-XGI to differentiate features in the nanoscale range is proven with the dark-field of Silica nanoparticles at different correlation lengths of calibrated sizes of 106 nm, 261 nm, and 507 nm.

3.
Acc Chem Res ; 56(9): 1004-1017, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37076974

RESUMO

ConspectusElectronics manufacturing involves Cu electrodeposition to form 3D circuitry of arbitrary complexity. This ranges from nanometer-wide interconnects between individual transistors to increasingly large multilevel intermediate and global scale on-chip wiring. At larger scale, similar technology is used to form micrometer-sized high aspect ratio through-silicon vias (TSV) that facilitate chip stacking and multilevel printed circuit board (PCB) metallization. Common to all of these applications is void-free Cu filling of lithographically defined trenches and vias. While line-of-sight physical vapor deposition processes cannot accomplish this feat, the combination of surfactants and electrochemical or chemical vapor deposition enables preferential metal deposition within recessed surface features known as superfilling. The same superconformal film growth processes account for the long-reported but poorly understood smoothing and brightening action provided by certain electroplating additives. Prototypical surfactant additives for superconformal Cu deposition from acid-based CuSO4 electrolytes include a combination of halide, polyether suppressor, sulfonate-terminated disulfide, and/or thiol accelerator and possibly a N-bearing cationic leveler. Many competitive and coadsorption dynamics underlie functional operation of the additives. Upon immersion, Cu surfaces are rapidly covered by a saturated halide layer that makes the interface more hydrophobic, thereby supporting the formation of a polyether suppressor layer. Also, halide serves as a cosurfactant supporting the adsorption of amphiphilic molecular disulfide species on the surface while inhibiting copper sulfide formation and incorporation into the growing deposit. Furthermore, the dangling hydrophilic sulfonate end group of the accelerator enables activated metal deposition by hindering polyether suppressor assembly. A common thread in superconformal feature filling is additive-derived positive feedback of the metal deposition reaction within recessed or re-entrant regions. For submicrometer features or optically rough surfaces, area reduction that accompanies the motion of concave surface segments results in the most strongly bound adsorbates' enrichment, which for the suppressor-accelerator systems is the sulfonate-terminated disulfide accelerator species. The superfilling and smoothing process is quantitatively captured by the curvature-enhanced adsorbate coverage mechanism. For larger features, such as TSV, whose depths approach the thickness of the hydrodynamic boundary layer, significant compositional and electrical gradients couple with the metal deposition process to give a negative differential resistance and related nonlinear effects on morphological evolution. For certain suppressor-only electrolytes, remarkable bottom-up feature filling occurs where metal deposition disrupts inhibiting adsorbates at the bottom of the TSV or overruns the ability of the suppressor to form due to kinetic or transport limitations. Because the electrical response to changes in interface chemistry is more rapid than mass transport processes, deposition on planar substrates proceeds by bifurcation into passive and active zones, generating Turing patterns. On patterned substrates, active zone development is biased toward the most recessed regions. The distinction between packaging and on-chip metallization will be blurred as the dimensions of the former merge with those of early day on-chip 3D metallization.

4.
Acc Chem Res ; 56(6): 677-688, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36848589

RESUMO

ConspectusWhere copper interconnects fabricated using superconformal electrodeposition processes have enabled dramatic advances in microelectronics over the past quarter century, gold filled gratings fabricated using superconformal Bi3+-mediated bottom-up filling electrodeposition processes promise to enable a new generation of X-ray imaging and microsystem technologies. Indeed, bottom-up Au-filled gratings have demonstrated excellent performance in X-ray phase contrast imaging of biological soft tissue and other low Z element samples even as studies using gratings with inferior Au fill have captured the potential for broader biomedical application. Four years ago, the Bi-stimulated bottom-up Au electrodeposition process was a scientific novelty where gold deposition was localized entirely on the bottoms of metallized trenches 3-µm-deep and 2-µm-wide, an aspect ratio of only 1.5, on centimeter scale fragments of patterned silicon wafers. Today the room-temperature processes routinely yield uniformly void-free filling of metallized trenches 60-µm-deep and 1-µm-wide, an aspect ratio 60, in gratings patterned across 100 mm Si wafers. Four distinctive characteristics of the evolution of void-free filling in the Bi3+-containing electrolyte are seen in experimental Au filling of fully metallized recessed features such as trenches and vias: (1) an "incubation period" of conformal deposition, (2) subsequent Bi-activated deposition localized on the bottom surface of features, (3) sustained bottom-up deposition that yields void-free filling, and (4) self-passivation of the active growth front at a distance from the feature opening defined by operating conditions. A recent model captures and explains all four features. The electrolyte solutions are simple and nontoxic, being near-neutral pH and composed of Na3Au(SO3)2 + Na2SO3 containing micromolar concentrations of Bi3+ additive, the latter generally introduced through electrodissolution from the metal. The influences of additive concentration, metal ion concentration, electrolyte pH, convection, and applied potential have been examined in some depth using both electroanalytical measurements on planar rotating disk electrodes and studies of feature filling, thereby defining and elucidating relatively wide processing windows for defect-free filling. The process control for bottom-up Au filling processes is observed to be quite flexible, with online changes of potential as well as concentration and pH adjustments during the course of filling compatible with processing. Furthermore, monitoring has enabled optimization of the filling evolution, including to shorten the incubation period for accelerated filling and to fill features of ever higher aspect ratio. The results to date indicate that the demonstrated filling of trenches with an aspect ratio of 60 represents a lower bound, a value determined only by the features presently available.

5.
Appl Opt ; 61(13): 3850-3854, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256429

RESUMO

Precisely aligned optical components are crucial prerequisites for X-ray tomography at high resolution. We propose a device with a fractal pattern for precise automatic focusing. The device is etched in a Si substrate by deep reactive ion etching and then filled by a self-terminating bottom-up Au electroplating process. The fractal nature of the device produces an X-ray transmission image with globally homogeneous macroscopic visibility and high local contrast for pixel sizes in the range of 0.165 µm to 11 µm, while the high absorption contrast provided between Au and Si enables its use for X-ray energies ranging from 12 keV to 40 keV.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33654328

RESUMO

Materials such as L10 Fe-based alloys with perpendicular magnetic anisotropy derived from crystal structure have the potential to deliver higher thermal stability of magnetic memory elements compared to materials whose anisotropy is derived from surfaces and interfaces. A number of processing parameters enable control of the quality and texture of L10 FePd among them, including substrate, deposition temperature, pressure and seed and buffer layer. The angle of inclination between the substrate and the sputtering target can also impact the texture of L10 crystallization of sputtered Fe-Pd and magnetic properties of the derived thin films. This study examines the difference between FePd layers that have been magnetron sputter deposited on Cr(15 nm)/Pt, Ir, or Ru(4 nm)/FePd (8 nm)/Ru(2 nm)/Ta(3 nm) substrate layers at an oblique angle (30° tilt from the sputtering target) versus normal incidence (target facing the substrate). X-ray diffraction, ferromagnetic resonance spectroscopy and vibrating sample magnetometry were used to compare the degree of L10 order and static and dynamic properties of films deposited under both conditions. The films grown using the oblique orientation exhibit a stronger degree of L10 orientation, a larger magnetic anisotropy energy and a lower Gilbert damping, on all three buffer layers.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33042324

RESUMO

Surface-enhanced infrared absorption spectroscopy is used to examine the co-adsorption of a selection of polyethers with Cl- under conditions relevant to superconformal Cu electrodeposition in CuSO4-H2SO4 electrolytes. In 0.1 mol/L H2SO4, a potential-dependent mixed SO4 2--H3O+/H2O layer forms on weakly textured (111) Cu thin-film surfaces. With the addition of 1 mmol/L NaCl, the SO4 2--H3O+/H2O adlayer is displaced and rapidly replaced by an ordered halide layer that disrupts the adjacent solvent network, leading to an increase in non-hydrogen-bonded water that makes the interface more hydrophobic. The altered wetting behavior facilitates co-adsorption of polyethers, such as poly(ethylene glycols), polyoxamers, or polyoxamines. Interfacial water is displaced by co-adsorption of the hydrophobic polymer segments on the Cl--terminated surface, while the hydrophilic ether oxygens are available for hydrogen bond formation with the solvent. The combined polyether-Cl- layer serves as an effective suppressor of the Cu electrodeposition reaction by limiting access of Cuaq 2+ to the underlying metal surface. This insight differs from previous work which suggested that polymer adsorption is mediated by Cu+-ether binding.

8.
ACS Appl Mater Interfaces ; 6(18): 15972-9, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25157419

RESUMO

This study presents windowless CdSe/CdTe thin film photovoltaic devices with in-plane patterning at a submicrometer length scale. The photovoltaic cells are fabricated upon two interdigitated comb electrodes prepatterned at micrometer length scale on an insulating substrate. CdSe is electrodeposited on one electrode, and CdTe is deposited by pulsed laser deposition over the entire surface of the resulting structure. Previous studies of symmetric devices are extended in this study. Specifically, device performance is explored with asymmetric devices having fixed CdTe contact width and a range of CdSe contact widths, and the devices are fabricated with improved dimensional tolerance. Scanning photocurrent microscopy (also known as laser beam induced current mapping) is used to examine local current collection efficiency, providing information on the spatial variation of performance that complements current-voltage and external quantum efficiency measurements of overall device performance. Modeling of carrier transport and recombination indicates consistency of experimental results for local and blanket illumination. Performance under simulated air mass 1.5 illumination exceeds 5% for all dimensions examined, and the best-performing device achieved 5.9% efficiency.

9.
ACS Appl Mater Interfaces ; 5(18): 9120-7, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23968397

RESUMO

This paper details the use of scanning photocurrent microscopy to examine localized current collection efficiency of thin-film photovoltaic devices with in-plane patterning at a submicrometer length scale. The devices are based upon two interdigitated comb electrodes at the micrometer length scale prepatterned on a substrate, with CdSe electrodeposited on one electrode and CdTe deposited over the entire surface of the resulting structure by pulsed laser deposition. Photocurrent maps provide information on what limits the performance of the windowless CdSe/CdTe thin-film photovoltaic devices, revealing "dead zones" particularly above the electrodes contacting the CdTe which is interpreted as recombination over the back contact. Additionally, the impact of ammonium sulfide passivation is examined, which enables device efficiency to reach 4.3% under simulated air mass 1.5 illumination.


Assuntos
Compostos de Cádmio/química , Compostos de Selênio/química , Energia Solar , Telúrio/química , Eletrodos , Pontos Quânticos/química , Sulfetos/química
10.
Inorg Chem ; 42(25): 8255-61, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14658876

RESUMO

The reaction of 1,1,1,5,5,5-hexafluoroacetylacetone (Hhfac) with Ag2O in the presence of L=THF, toluene, and Me3SiCH=CH2 was studied to obtain [Ag(hfac)L]x complexes for use as chemical vapor deposition precursors. The structures and volatilities of these three complexes were compared to those of the previously synthesized Ag(hfac)(Me3SiC triple bond CSiMe3), 1, which was also crystallographically characterized for comparison. The reaction of Ag2O with Hhfac in THF forms the polymeric complex [Ag4(hfac)4(THF)2]infinity, 2, which has tetrametallic subunits with hfac ligands that bridge via oxygen and carbon. Both 4- and 5-coordinate silver metal centers are found in 2. Ag2O reacts with Hhfac in toluene to form a complex with a similar tetrametallic unit [Ag4(hfac)4(toluene)2]infinity, 3. In this case, the tetrametallic subunits are assembled via bridging toluene molecules, and each silver is 6-coordinate. In the presence of excess vinyltrimethylsilane (vtms), Ag2O and Hhfac form [Ag3(hfac)3(vtms)]infinity, 4, which contains trimetallic subunits assembled via oxygen atoms of bridging hfac ligands and 5- and 6-coordinate silver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...