Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 37(28): 6778-6785, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28592691

RESUMO

Neocortical circuits use a family of homeostatic plasticity mechanisms to stabilize firing, including excitatory and inhibitory synaptic scaling and homeostatic intrinsic plasticity (Turrigiano and Nelson, 2004). All three mechanisms can be induced in tandem in cultured rat neocortical pyramidal neurons by chronic manipulations of firing, but it is unknown whether they are coinduced by the same activity-sensors and signaling pathways, or whether they are under independent control. Calcium/calmodulin-dependent protein kinase type IV (CaMKIV) is a key sensory/effector in excitatory synaptic scaling that senses perturbations in firing through changes in calcium influx, and translates this into compensatory changes in excitatory quantal amplitude (Ibata et al., 2008; Goold and Nicoll, 2010). Whether CaMKIV also controls inhibitory synaptic scaling and intrinsic homeostatic plasticity was unknown. To test this we manipulated CaMKIV signaling in individual neurons using dominant-negative (dn) or constitutively-active (ca) forms of nuclear-localized CaMKIV and measured the induction of all three forms of homeostatic plasticity. We found that excitatory synaptic scaling and intrinsic plasticity were bidirectionally coinduced by these manipulations. In contrast, these cell-autonomous manipulations had no impact on inhibitory quantal amplitude. Finally, we found that spontaneous firing rates were shifted up or down by dnCaMKIV or caCaMKIV, respectively, suggesting that uncoupling CaMKIV activation from activity generates an error signal in the negative feedback mechanism that controls firing rates. Together, our data show that excitatory synaptic scaling and intrinsic excitability are tightly coordinated through bidirectional changes in the same signaling pathway, whereas inhibitory synaptic scaling is sensed and regulated through an independent control mechanism.SIGNIFICANCE STATEMENT Maintaining stable function in highly interconnected neural circuits is essential for preventing circuit disorders, and is accomplished through a set of negative feedback mechanisms that sense and compensate for perturbations in activity. These "homeostatic" mechanisms can target synaptic excitation, synaptic inhibition, and intrinsic excitability, but whether they are independently controlled is not known. We find that synaptic excitation and intrinsic excitability are coregulated in individual neurons through CaMKIV signaling, which is tightly controlled by neuronal activity. In contrast, synaptic inhibition is unaffected by changes in firing or CaMKIV signaling in individual neurons. These results show that circuit stability is controlled both through cell-autonomous mechanisms that regulate some aspects of excitability, as well as circuit-level mechanisms that adjust inhibition.


Assuntos
Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Masculino , Ratos , Ratos Long-Evans
2.
Epilepsy Res ; 108(4): 605-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24613745

RESUMO

PURPOSE: To describe the subunit composition of glutamate and gamma-aminobutyric acid (GABA) receptors in brain tissue from patients with different types of status epilepticus. PATIENTS AND METHODS: The subunit composition of glutamate and GABA receptors was analyzed in: (1) surgical brain samples from three patients with refractory convulsive status epilepticus, three patients with electrical status epilepticus in sleep, and six patients with refractory epilepsy, and (2) brain autopsy samples from four controls who died without neurological disorders. Subunit expression was quantified with Western blotting and messenger ribonucleic acid (mRNA) expression was quantified with reverse polymerase chain reaction. RESULTS: Western blot analysis demonstrated the following patterns (as compared to controls): (1) alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors: elevated GluA1/GluA2 ratio in electrical status epilepticus in sleep (465%±119) and refractory epilepsy (329%±125; p<0.01); (2) N-methyl-d-aspartate (NMDA) receptors: increased GluN2B/GluN2A ratio in electrical status epilepticus in sleep (3682%±1000) and refractory convulsive status epilepticus (3520%±751; p<0.05); (3) GABA receptors: elevated α2/α1 ratio in refractory epilepsy (321%±138; p<0.05) and refractory convulsive status epilepticus (346%±74; p<0.05); and (4) patients with underlying malformation of cortical development had increased ratios in GluA1/GluA2 (382%±149; p<0.01), GluN2B/GluN2A (3321%±1581; p<0.05) and α2/α1 (303%±86; p<0.01). Quantification of mRNA demonstrated an elevated GABRA2/GABRA1 ratio in refractory epilepsy (712; p<0.05) as compared to controls. CONCLUSIONS: The subunit composition of glutamate and GABA receptors in patients with status epilepticus mirrors that found in animal models of refractory status epilepticus and may promote self-sustaining seizures. Receptor subunit changes may provide additional targets for improved treatment.


Assuntos
Córtex Cerebral/metabolismo , Subunidades Proteicas/metabolismo , Receptores de GABA/metabolismo , Receptores de Glutamato/metabolismo , Estado Epiléptico/metabolismo , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Adulto Jovem
3.
Epilepsia ; 54(11): 1922-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24117347

RESUMO

PURPOSE: To determine whether AMPA receptor (AMPAR) antagonist NBQX can prevent early mammalian target of rapamycin (mTOR) pathway activation and long-term sequelae following neonatal seizures in rats, including later-life spontaneous recurrent seizures, CA3 mossy fiber sprouting, and autistic-like social deficits. METHODS: Long-Evans rats experienced hypoxia-induced neonatal seizures (HS) at postnatal day (P)10. NBQX (20 mg/kg) was administered immediately following HS (every 12 h × 4 doses). Twelve hours post-HS, we assessed mTOR activation marker phosphorylated p70-S6 kinase (p-p70S6K) in hippocampus and cortex of vehicle (HS + V) or NBQX-treated post-HS rats (HS + N) versus littermate controls (C + V). Spontaneous seizure activity was compared between groups by epidural cortical electroencephalography (EEG) at P70-100. Aberrant mossy fiber sprouting was measured using Timm staining. Finally, we assessed behavior between P30 and P38. KEY FINDINGS: Postseizure NBQX treatment significantly attenuated seizure-induced increases in p-p70S6K in the hippocampus (p < 0.01) and cortex (p < 0.001). Although spontaneous recurrent seizures increased in adulthood in HS + V rats compared to controls (3.22 ± 1 seizures/h; p = 0.03), NBQX significantly attenuated later-life seizures (0.14 ± 0.1 seizures/h; p = 0.046). HS + N rats showed less aberrant mossy fiber sprouting (115 ± 8.0%) than vehicle-treated post-HS rats (174 ± 10%, p = 0.004), compared to controls (normalized to 100%). Finally, NBQX treatment prevented alterations in later-life social behavior; post-HS rats showed significantly decreased preference for a novel over a familiar rat (71.0 ± 12 s) compared to controls (99.0 ± 15.6 s; p < 0.01), whereas HS + N rats showed social novelty preference similar to controls (114.3 ± 14.1 s). SIGNIFICANCE: Brief NBQX administration during the 48 h postseizure in P10 Long-Evans rats suppresses transient mTOR pathway activation and attenuates spontaneous recurrent seizures, social preference deficits, and mossy fiber sprouting observed in vehicle-treated adult rats after early life seizures. These results suggest that acute AMPAR antagonist treatment during the latent period immediately following neonatal HS can modify seizure-induced activation of mTOR, reduce the frequency of later-life seizures, and protect against CA3 mossy fiber sprouting and autistic-like social deficits.


Assuntos
Neurônios/metabolismo , Quinoxalinas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Convulsões/tratamento farmacológico , Envelhecimento , Animais , Animais Recém-Nascidos , Transtorno Autístico/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Ratos , Ratos Long-Evans , Receptores de AMPA/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo
4.
PLoS One ; 7(5): e35885, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22567115

RESUMO

Early life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of Rapamycin (mTOR) modulates protein translation and is dysregulated in Tuberous Sclerosis Complex, a disorder characterized by epilepsy and autism. We used a rodent model of acute hypoxia-induced neonatal seizures that results in long term increases in neuronal excitability, seizure susceptibility, and spontaneous seizures, to determine how seizures alter mTOR Complex 1 (mTORC1) signaling. We hypothesized that seizures occurring at a developmental stage coinciding with a critical period of synaptogenesis will activate mTORC1, contributing to epileptic networks and autistic-like behavior in later life. Here we show that in the rat, baseline mTORC1 activation peaks during the first three postnatal weeks, and induction of seizures at postnatal day 10 results in further transient activation of its downstream targets phospho-4E-BP1 (Thr37/46), phospho-p70S6K (Thr389) and phospho-S6 (Ser235/236), as well as rapid induction of activity-dependent upstream signaling molecules, including BDNF, phospho-Akt (Thr308) and phospho-ERK (Thr202/Tyr204). Furthermore, treatment with the mTORC1 inhibitor rapamycin immediately before and after seizures reversed early increases in glutamatergic neurotransmission and seizure susceptibility and attenuated later life epilepsy and autistic-like behavior. Together, these findings suggest that in the developing brain the mTORC1 signaling pathway is involved in epileptogenesis and altered social behavior, and that it may be a target for development of novel therapies that eliminate the progressive effects of neonatal seizures.


Assuntos
Epilepsia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Comportamento Animal/fisiologia , Western Blotting , Epilepsia/fisiopatologia , Imuno-Histoquímica , Ácido Caínico/farmacologia , Locomoção/fisiologia , Masculino , Ratos , Convulsões/induzido quimicamente , Convulsões/metabolismo
5.
Ann Neurol ; 71(4): 539-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22447678

RESUMO

OBJECTIVE: The most common neurological symptom of tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) is early life refractory epilepsy. As previous studies have shown enhanced excitatory glutamatergic neurotransmission in TSC and FCD brains, we hypothesized that neurons associated with these lesions may also express altered γ-aminobutyric acid (GABA)(A) receptor (GABA(A)R)-mediated inhibition. METHODS: Expression of the GABA(A)R subunits α1 and α4, and the Na(+)-K(+)-2Cl(-) (NKCC1) and the K(+)-Cl(-) (KCC2) transporters, in human TSC and FCD type II specimens were analyzed by Western blot and double label immunocytochemistry. GABA(A) R responses in dysplastic neurons from a single case of TSC were measured by perforated patch recording and compared to normal-appearing cortical neurons from a non-TSC epilepsy case. RESULTS: TSC and FCD type IIb lesions demonstrated decreased expression of GABA(A)R α1, and increased NKCC1 and decreased KCC2 levels. In contrast, FCD type IIa lesions showed decreased α4, and increased expression of both NKCC1 and KCC2 transporters. Patch clamp recordings from dysplastic neurons in acute slices from TSC tubers demonstrated excitatory GABA(A)R responses that were significantly attenuated by the NKCC1 inhibitor bumetanide, in contrast to hyperpolarizing GABA(A)R-mediated currents in normal neurons from non-TSC cortical slices. INTERPRETATION: Expression and function of GABA(A)Rs in TSC and FCD type IIb suggest the relative benzodiazepine insensitivity and more excitatory action of GABA compared to FCD type IIa. These factors may contribute to resistance of seizure activity to anticonvulsants that increase GABAergic function, and may justify add-on trials of the NKCC1 inhibitor bumetanide for the treatment of TSC and FCD type IIb-related epilepsy.


Assuntos
Encefalopatias/metabolismo , Malformações do Desenvolvimento Cortical/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Esclerose Tuberosa/metabolismo , Adolescente , Adulto , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/complicações , Encefalopatias/patologia , Criança , Pré-Escolar , Epilepsia/etiologia , Epilepsia/metabolismo , Epilepsia/patologia , Feminino , Humanos , Imuno-Histoquímica , Lactente , Masculino , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical do Grupo I , Neurônios/patologia , Técnicas de Patch-Clamp , Receptores de GABA/biossíntese , Simportadores de Cloreto de Sódio-Potássio/biossíntese , Membro 2 da Família 12 de Carreador de Soluto , Simportadores/biossíntese , Esclerose Tuberosa/complicações , Esclerose Tuberosa/patologia , Adulto Jovem , Cotransportadores de K e Cl-
6.
Stroke ; 37(1): 151-5, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16306465

RESUMO

BACKGROUND AND PURPOSE: Anticoagulation-related intracerebral hemorrhage (ICH) is often fatal, and rapid reversal of anticoagulation is the most appealing strategy currently available for treatment. We sought to determine whether particular emergency department (ED) interventions are effective in reversing coagulopathy and improving outcome. METHODS: Consecutive patients with warfarin-related ICH presenting to an urban tertiary care hospital from 1998 to 2004 were prospectively captured in a database. ED records were retrospectively reviewed for dose and timing of fresh-frozen plasma (FFP) and vitamin K, as well as serial coagulation measures. After excluding patients with incomplete ED records, do-not-resuscitate orders established in the ED, initial international normalized ratio (INR) < or =1.4, and for whom no repeat INR was performed, 69 patients were available for analysis. The primary outcome was a documented INR < or =1.4 within 24 hours of ED presentation. RESULTS: Patients whose INR was successfully reversed within 24 hours had a shorter median time from diagnosis to first dose of FFP (90 minutes versus 210 minutes; P=0.02). In multivariable analysis, shorter time to vitamin K, as well as FFP, predicted INR correction. Every 30 minutes of delay in the first dose of FFP was associated with a 20% decreased odds of INR reversal within 24 hours (odds ratio, 0.8; 95% CI, 0.63 to 0.99). Dosing of FFP and vitamin K had no effect. No ED intervention was associated with improved clinical outcome. CONCLUSIONS: Time to treatment is the most important determinant of 24-hour anticoagulation reversal. Although additional study is required to determine the clinical benefit of rapid reversal of anticoagulation, minimizing delays in FFP administration is a prudent first step in emergency management of warfarin-related ICH.


Assuntos
Transfusão de Sangue/métodos , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/terapia , Varfarina/efeitos adversos , Idoso , Anticoagulantes/uso terapêutico , Medicina de Emergência/métodos , Feminino , Hospitais , Humanos , Coeficiente Internacional Normatizado , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Plasma/metabolismo , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Vitamina K/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...