Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(10): 8186-8200, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38733345

RESUMO

The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent post-translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ligação a DNA , Histonas , Lisina , Histonas/metabolismo , Histonas/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Lisina/metabolismo , Lisina/química , Acetilação , Processamento de Proteína Pós-Traducional , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Ligação Proteica , Domínios Proteicos , Modelos Moleculares , Sítios de Ligação
2.
Elife ; 122023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204295

RESUMO

In nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.g. K9ac, K14ac, K18ac) is linked to increased H3K4me3 engagement by the BPTF PHD finger, but it is unknown if this mechanism has a broader extension. Here, we show that H3 tail acetylation promotes nucleosomal accessibility to other H3K4 methyl readers, and importantly, extends to H3K4 writers, notably methyltransferase MLL1. This regulation is not observed on peptide substrates yet occurs on the cis H3 tail, as determined with fully-defined heterotypic nucleosomes. In vivo, H3 tail acetylation is directly and dynamically coupled with cis H3K4 methylation levels. Together, these observations reveal an acetylation 'chromatin switch' on the H3 tail that modulates read-write accessibility in nucleosomes and resolves the long-standing question of why H3K4me3 levels are coupled with H3 acetylation.


Assuntos
Cromatina , Histonas , Histonas/metabolismo , Nucleossomos , Metilação , Acetilação
3.
Semin Cell Dev Biol ; 135: 73-84, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35277331

RESUMO

Post-translational modifications (PTMs) of histones play a key role in DNA-based processes and contribute to cell differentiation and gene function by adding an extra layer of regulation. Variations in histone sequences within each family of histones expands the chromatin repertoire and provide further mechanisms for regulation and signaling. While variants are known to be present in certain genomic loci and carry out important functions, much remains unknown about variant-specific PTMs and their role in regulating chromatin. This ambiguity is in part due to the limited technologies and appropriate reagents to identify and quantitate variant-specific PTMs. Nonetheless, histone variants are an integral portion of the chromatin system and the understanding of their modifications and resolving how PTMs function differently on specific variants is paramount to the advancement of the field. Here we review the current knowledge on post-translational modifications specific to histone variants, with an emphasis on well-characterized PTMs of known function. While not every possible PTM is addressed, we present key variant-specific PTMs and what is known about their function and mechanisms in convenient reference tables.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Histonas/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Cromatina/genética , DNA/genética
4.
J Immunol ; 200(3): 909-914, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29282307

RESUMO

Regulatory T cells (Tregs) use a distinct TCR repertoire and are more self-reactive compared with conventional T cells. However, the extent to which TCR affinity regulates the function of self-reactive Tregs is largely unknown. In this study, we used a two-TCR model to assess the role of TCR affinity in Treg function during autoimmunity. We observed that high- and low-affinity Tregs were recruited to the pancreas and contributed to protection from autoimmune diabetes. Interestingly, high-affinity cells preferentially upregulated the TCR-dependent Treg functional mediators IL-10, TIGIT, GITR, and CTLA4, whereas low-affinity cells displayed increased transcripts for Areg and Ebi3, suggesting distinct functional profiles. The results of this study suggest mechanistically distinct and potentially nonredundant roles for high- and low-affinity Tregs in controlling autoimmunity.


Assuntos
Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Anfirregulina/biossíntese , Animais , Antígeno CTLA-4/biossíntese , Adesão Celular/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/biossíntese , Interleucina-10/biossíntese , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Antígenos de Histocompatibilidade Menor/biossíntese , Pâncreas/citologia , Pâncreas/imunologia , Receptores de Citocinas/biossíntese , Receptores Imunológicos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...