Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 246(10): 1177-1183, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33535809

RESUMO

Osteoblasts play an important role in bone regeneration and repair. The hypoxia condition in bone occurs when bone undergoes fracture, and this will trigger a series of biochemical and mechanical changes to enable bone repair. Hence, it is interesting to observe the metabolites and metabolism changes when osteoblasts are exposed to hypoxic condition. This study has looked into the response of human osteoblast hFOB 1.19 under normoxic and hypoxic conditions by observing the cell growth and utilization of metabolites via Phenotype MicroArrays™ under these two different oxygen concentrations. The cell growth of hFOB 1.19 under hypoxic condition showed better growth compared to hFOB 1.19 under normal condition. In this study, osteoblast used glycolysis as the main pathway to produce energy as hFOB 1.19 in both hypoxic and normoxic conditions showed cell growth in well containing dextrin, glycogen, maltotriose, D-maltose, D-glucose-6-phospate, D-glucose, D-mannose, D-Turanose, D-fructose-6-phosphate, D-galactose, uridine, adenosine, inosine and α-keto-glutaric acid. In hypoxia, the cells have utilized additional metabolites such as α-D-glucose-1-phosphate and D-fructose, indicating possible activation of glycogen synthesis and glycogenolysis to metabolize α-D-glucose-1-phosphate. Meanwhile, during normoxia, D-L-α-glycerol phosphate was used, and this implies that the osteoblast may use glycerol-3-phosphate shuttle and oxidative phosphorylation to metabolize glycerol-3-phosphate.


Assuntos
Feto/patologia , Análise em Microsséries , Osteoblastos/patologia , Hipóxia Celular , Linhagem Celular , Sobrevivência Celular , Humanos , Osteoblastos/metabolismo , Fenótipo
2.
Biotechnol Prog ; 32(4): 1038-45, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27088434

RESUMO

The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus-like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti-myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high-performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038-1045, 2016.


Assuntos
Vírus Nipah/química , Pichia/metabolismo , Proteínas da Matriz Viral/química , Vírion/metabolismo , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Vírus Nipah/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas da Matriz Viral/biossíntese , Proteínas da Matriz Viral/metabolismo , Vírion/química , Vírion/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...