Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
2.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37171855

RESUMO

This study characterized high-quality whole-genome sequences of a sentinel, surveillance-based collection of 1710 Neisseria gonorrhoeae (GC) isolates from 2019 collected in the USA as part of the Gonococcal Isolate Surveillance Project (GISP). It aims to provide a detailed report of strain diversity, phylogenetic relationships and resistance determinant profiles associated with reduced susceptibilities to antibiotics of concern. The 1710 isolates represented 164 multilocus sequence types and 21 predominant phylogenetic clades. Common genomic determinants defined most strains' phenotypic, reduced susceptibility to current and historic antibiotics (e.g. bla TEM plasmid for penicillin, tetM plasmid for tetracycline, gyrA for ciprofloxacin, 23S rRNA and/or mosaic mtr operon for azithromycin, and mosaic penA for cefixime and ceftriaxone). The most predominant phylogenetic clade accounted for 21 % of the isolates, included a majority of the isolates with low-level elevated MICs to azithromycin (2.0 µg ml-1), carried a mosaic mtr operon and variants in PorB, and showed expansion with respect to data previously reported from 2018. The second largest clade predominantly carried the GyrA S91F variant, was largely ciprofloxacin resistant (MIC ≥1.0 µg ml-1), and showed significant expansion with respect to 2018. Overall, a low proportion of isolates had medium- to high-level elevated MIC to azithromycin ((≥4.0 µg ml-1), based on C2611T or A2059G 23S rRNA variants). One isolate carried the penA 60.001 allele resulting in elevated MICs to cefixime and ceftriaxone of 1.0 µg ml-1. This high-resolution snapshot of genetic profiles of 1710 GC sequences, through a comparison with 2018 data (1479 GC sequences) within the sentinel system, highlights change in proportions and expansion of select GC strains and the associated genetic mechanisms of resistance. The knowledge gained through molecular surveillance may support rapid identification of outbreaks of concern. Continued monitoring may inform public health responses to limit the development and spread of antibiotic-resistant gonorrhoea.


Assuntos
Anti-Infecciosos , Gonorreia , Humanos , Neisseria gonorrhoeae , Ceftriaxona , Azitromicina/farmacologia , Cefixima , Filogenia , RNA Ribossômico 23S/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Gonorreia/epidemiologia , Gonorreia/tratamento farmacológico , Ciprofloxacina/farmacologia , Mitomicina , Genômica
3.
Front Microbiol ; 14: 1154664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056744

RESUMO

Introduction: Chlamydia trachomatis, a gram-negative obligate intracellular bacterium, commonly causes sexually transmitted infections (STIs). Little is known about C. trachomatis transmission within the host, which is important for understanding disease epidemiology and progression. Methods: We used RNA-bait enrichment and whole-genome sequencing to compare rectal, vaginal and endocervical samples collected at the same time from 26 study participants who attended Fijian Ministry of Health and Medical Services clinics and tested positive for C. trachomatis at each anatomic site. Results: The 78 C. trachomatis genomes from participants resolved into two major clades of the C. trachomatis phylogeny (the "prevalent urogenital and anorectal" clade and "non-prevalent urogenital and anorectal" clade). For 21 participants, genome sequences were almost identical in each anatomic site. For the other five participants, two distinct C. trachomatis strains were present in different sites; in two cases, the vaginal sample was a mixture of strains. Discussion: The absence of large numbers of fixed SNPs between C. trachomatis genomes within many of the participants could indicate recent acquisition of infection prior to the clinic visit without sufficient time to accumulate significant genetic variation in different body sites. This model suggests that many C. trachomatis infections may be resolved relatively quickly in the Fijian population, possibly reflecting common prescription or over-the-counter antibiotics usage.

4.
bioRxiv ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747780

RESUMO

Chlamydia trachomatis , a gram-negative obligate intracellular bacterium, commonly causes sexually transmitted infections (STIs). Little is known about C. trachomatis transmission within the host, which is important for understanding disease epidemiology and progression. We used RNA-bait enrichment and whole-genome sequencing to compare rectal, vaginal and endocervical samples collected at the same time from 26 study participants who attended Fijian Ministry of Health and Medical Services clinics and tested positive for C. trachomatis at each anatomic site. The 78 C. trachomatis genomes from participants were from two major clades of the C. trachomatis phylogeny (the "prevalent urogenital and anorecta"l clade and "non-prevalent urogenital and anorectal" clade). For 21 participants, genome sequences were almost identical in each anatomic site. For the other five participants, two distinct C. trachomatis strains were present in different sites; in two cases, the vaginal sample was a mixture of strains. The absence of large numbers of fixed SNPs between C. trachomatis strains within many of the participants could indicate recent acquisition of infection prior to the clinic visit without sufficient time to accumulate significant variation in the different body sites. This model suggests that many C. trachomatis infections may be resolved relatively quickly in the Fijian population, possibly reflecting common prescription or over-the-counter antibiotics usage. Importance: Chlamydia trachomatis is a bacterial pathogen that causes millions of sexually transmitted infections (STIs) annually across the globe. Because C. trachomatis lives inside human cells, it has historically been hard to study. We know little about how the bacterium spreads between body sites. Here, samples from 26 study participants who had simultaneous infections in their vagina, rectum and endocervix were genetically analyzed using an improved method to extract C. trachomatis DNA directly from clinical samples for genome sequencing. By analyzing patterns of mutations in the genomes, we found that 21 participants shared very similar C. trachomatis strains in all three anatomic sites, suggesting recent infection and spread. For five participants two C. trachomatis strains were evident, indicating multiple infections. This study is significant in that improved enrichment methods for genome sequencing provides robust data to genetically trace patterns of C. trachomatis infection and transmission within an individual for epidemiologic and pathogenesis interrogations.

5.
Open Forum Infect Dis ; 9(7): ofac247, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35855008

RESUMO

Disseminated gonococcal infection (DGI) is a rare complication caused by the systemic dissemination of Neisseria gonorrhoeae to normally sterile anatomical sites. Little is known about the genetic diversity of DGI gonococcal strains and how they relate to other gonococcal strains causing uncomplicated mucosal infections. We used whole genome sequencing to characterize DGI isolates (n = 30) collected from a surveillance system in Georgia, United States, during 2017-2020 to understand phylogenetic clustering among DGI as well as uncomplicated uro- and extragenital gonococcal infection (UGI) isolates (n = 110) collected in Fulton County, Georgia, during 2017-2019. We also investigated the presence or absence of genetic markers related to antimicrobial resistance (AMR) as well as surveyed the genomes for putative virulence genetic factors associated with normal human-serum (NHS) resistance that might facilitate DGI. We found that DGI strains demonstrated significant genetic variability similar to the population structure of isolates causing UGI, with sporadic incidences of geographically clustered DGI strains. DGI isolates contained various AMR markers and genetic mechanisms associated with NHS resistance. DGI isolates had a higher frequency of the porB1A allele compared with UGI (67% vs 9%, P < .0001); however, no single NHS resistance marker was found in all DGI isolates. Continued DGI surveillance with genome-based characterization of DGI isolates is necessary to better understand specific factors that promote systemic dissemination.

6.
mSphere ; 7(3): e0000922, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35491834

RESUMO

Downstream next-generation sequencing (NGS) of the syphilis spirochete Treponema pallidum subspecies pallidum (T. pallidum) is hindered by low bacterial loads and the overwhelming presence of background metagenomic DNA in clinical specimens. In this study, we investigated selective whole-genome amplification (SWGA) utilizing multiple displacement amplification (MDA) in conjunction with custom oligonucleotides with an increased specificity for the T. pallidum genome and the capture and removal of 5'-C-phosphate-G-3' (CpG) methylated host DNA using the NEBNext Microbiome DNA enrichment kit followed by MDA with the REPLI-g single cell kit as enrichment methods to improve the yields of T. pallidum DNA in isolates and lesion specimens from syphilis patients. Sequencing was performed using the Illumina MiSeq v2 500 cycle or NovaSeq 6000 SP platform. These two enrichment methods led to 93 to 98% genome coverage at 5 reads/site in 5 clinical specimens from the United States and rabbit-propagated isolates, containing >14 T. pallidum genomic copies/µL of sample for SWGA and >129 genomic copies/µL for CpG methylation capture with MDA. Variant analysis using sequencing data derived from SWGA-enriched specimens showed that all 5 clinical strains had the A2058G mutation associated with azithromycin resistance. SWGA is a robust method that allows direct whole-genome sequencing (WGS) of specimens containing very low numbers of T. pallidum, which has been challenging until now. IMPORTANCE Syphilis is a sexually transmitted, disseminated acute and chronic infection caused by the bacterial pathogen Treponema pallidum subspecies pallidum. Primary syphilis typically presents as single or multiple mucocutaneous lesions and, if left untreated, can progress through multiple stages with various clinical manifestations. Molecular studies often rely on direct amplification of DNA sequences from clinical specimens; however, this can be impacted by inadequate samples due to disease progression or timing of patients seeking clinical care. While genotyping has provided important data on circulating strains over the past 2 decades, WGS data are needed to better understand strain diversity, perform evolutionary tracing, and monitor antimicrobial resistance markers. The significance of our research is the development of an SWGA DNA enrichment method that expands the range of clinical specimens that can be directly sequenced to include samples with low numbers of T. pallidum.


Assuntos
Sífilis , Treponema pallidum , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Coelhos , Sífilis/microbiologia , Treponema pallidum/genética , Sequenciamento Completo do Genoma
7.
Front Microbiol ; 13: 815044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250931

RESUMO

In January and February 2015, Neisseria meningitidis serogroup B (NmB) outbreaks occurred at two universities in the United States, and mass vaccination campaigns using MenB vaccines were initiated as part of a public health response. Meningococcal carriage evaluations were conducted concurrently with vaccination campaigns at these two universities and at a third university, where no NmB outbreak occurred. Meningococcal isolates (N = 1,514) obtained from these evaluations were characterized for capsule biosynthesis by whole-genome sequencing (WGS). Functional capsule polysaccharide synthesis (cps) loci belonging to one of seven capsule genogroups (B, C, E, W, X, Y, and Z) were identified in 122 isolates (8.1%). Approximately half [732 (48.4%)] of isolates could not be genogrouped because of the lack of any serogroup-specific genes. The remaining 660 isolates (43.5%) contained serogroup-specific genes for genogroup B, C, E, W, X, Y, or Z, but had mutations in the cps loci. Identified mutations included frameshift or point mutations resulting in premature stop codons, missing or fragmented genes, or disruptions due to insertion elements. Despite these mutations, 49/660 isolates expressed capsule as observed with slide agglutination, whereas 45/122 isolates with functional cps loci did not express capsule. Neither the variable capsule expression nor the genetic variation in the cps locus was limited to a certain clonal complex, except for capsule null isolates (predominantly clonal complex 198). Most of the meningococcal carriage isolates collected from student populations at three US universities were non-groupable as a result of either being capsule null or containing mutations within the capsule locus. Several mutations inhibiting expression of the genes involved with the synthesis and transport of the capsule may be reversible, allowing the bacteria to switch between an encapsulated and non-encapsulated state. These findings are particularly important as carriage is an important component of the transmission cycle of the pathogen, and understanding the impact of genetic variations on the synthesis of capsule, a meningococcal vaccine target and an important virulence factor, may ultimately inform strategies for control and prevention of disease caused by this pathogen.

8.
J Clin Microbiol ; 60(2): e0173221, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34817203

RESUMO

Urethral infections caused by an emerging nongroupable (NG) urethrotropic clade of Neisseria meningitidis were first reported in the United States in 2015 (the "U.S. NmNG urethritis clade"). Here, we evaluate for the presence of other urethral pathogens in men with U.S. NmNG urethritis clade infection. We evaluated 129 urine specimens collected from men at a sexual health clinic, including 33 from patients with culture-confirmed or suspected urethral N. meningitidis infection and 96 specimens in which nucleic acid amplification test detected Neisseria gonorrhoeae, Chlamydia trachomatis, both pathogens, or neither pathogen. N. meningitidis was detected first by real-time PCR, followed by metagenomic shotgun sequencing of 91 specimens to identify coinfections. N. meningitidis genomes were sequenced following selective whole-genome amplification when possible. Metagenomic sequencing detected N. meningitidis in 16 of 17 specimens from culture-confirmed N. meningitidis cases, with no coinfection by other conventional urethral pathogens. Metagenomic sequencing also detected N. meningitidis in three C. trachomatis-positive specimens, one specimen positive for both N. gonorrhoeae and C. trachomatis, and nine specimens with negative N. gonorrhoeae and C. trachomatis results, eight of which had suspected Neisseria infections. N. meningitidis from culture-confirmed N. meningitidis cases belonged to the U.S. NmNG urethritis clade, while N. meningitidis identified in other specimens belonged to multiple clonal complexes. Additional urethral pathogens were predominant in non-N. meningitidis specimens, including N. gonorrhoeae, C. trachomatis, Mycoplasma genitalium, Ureaplasma urealyticum, and herpes simplex virus 2. Coinfection with other conventional urethral pathogens is rare in men with culture-confirmed U.S. NmNG urethritis clade infection and points to the strong association of this clade with disease.


Assuntos
Infecções por Chlamydia , Gonorreia , Infecções Meningocócicas , Uretrite , Chlamydia trachomatis , Humanos , Masculino , Neisseria gonorrhoeae/genética , Uretrite/diagnóstico , Uretrite/etiologia , Urina
9.
Genome Biol Evol ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34962987

RESUMO

Neisseria gonorrhoeae multilocus sequence type (ST) 9363 core-genogroup isolates have been associated with reduced azithromycin susceptibility (AZMrs) and show evidence of clonal expansion in the United States. Here, we analyze a global collection of ST-9363 core-genogroup genomes to shed light on the emergence and dissemination of this strain. The global population structure of ST-9363 core-genogroup falls into three lineages: Basal, European, and North American; with 32 clades within all lineages. Although, ST-9363 core-genogroup is inferred to have originated from Asia in the mid-19th century; we estimate the three modern lineages emerged from Europe in the late 1970s to early 1980s. The European lineage appears to have emerged and expanded from around 1986 to 1998, spreading into North America and Oceania in the mid-2000s with multiple introductions, along with multiple secondary reintroductions into Europe. Our results suggest two separate acquisition events of mosaic mtrR and mtrR promoter alleles: first during 2009-2011 and again during the 2012-2013 time, facilitating the clonal expansion of this core-genogroup with AZMrs in the United States. By tracking phylodynamic evolutionary trajectories of clades that share distinct demography as well as population-based genomic statistics, we demonstrate how recombination and selective pressures in the mtrCDE efflux operon granted a fitness advantage to establish ST-9363 as a successful gonococcal lineage in the United States and elsewhere. Although it is difficult to pinpoint the exact timing and emergence of this young core-genogroup, it remains critically important to continue monitoring it, as it could acquire additional resistance markers.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/farmacologia , Farmacorresistência Bacteriana/genética , Gonorreia/tratamento farmacológico , Gonorreia/epidemiologia , Gonorreia/genética , Humanos , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/genética , Óperon , Estados Unidos
10.
Front Microbiol ; 13: 1056418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36817109

RESUMO

Introduction: Free-living amoebae of the Naegleria genus belong to the major protist clade Heterolobosea and are ubiquitously distributed in soil and freshwater habitats. Of the 47 Naegleria species described, N. fowleri is the only one being pathogenic to humans, causing a rare but fulminant primary amoebic meningoencephalitis. Some Naegleria genome sequences are publicly available, but the genetic basis for Naegleria diversity and ability to thrive in diverse environments (including human brain) remains unclear. Methods: Herein, we constructed a high-quality Naegleria genus pangenome to obtain a comprehensive catalog of genes encoded by these amoebae. For this, we first sequenced, assembled, and annotated six new Naegleria genomes. Results and Discussion: Genome architecture analyses revealed that Naegleria may use genome plasticity features such as ploidy/aneuploidy to modulate their behavior in different environments. When comparing 14 near-to-complete genome sequences, our results estimated the theoretical Naegleria pangenome as a closed genome, with 13,943 genes, including 3,563 core and 10,380 accessory genes. The functional annotations revealed that a large fraction of Naegleria genes show significant sequence similarity with those already described in other kingdoms, namely Animalia and Plantae. Comparative analyses highlighted a remarkable genomic heterogeneity, even for closely related strains and demonstrate that Naegleria harbors extensive genome variability, reflected in different metabolic repertoires. If Naegleria core genome was enriched in conserved genes essential for metabolic, regulatory and survival processes, the accessory genome revealed the presence of genes involved in stress response, macromolecule modifications, cell signaling and immune response. Commonly reported N. fowleri virulence-associated genes were present in both core and accessory genomes, suggesting that N. fowleri's ability to infect human brain could be related to its unique species-specific genes (mostly of unknown function) and/or to differential gene expression. The construction of Naegleria first pangenome allowed us to move away from a single reference genome (that does not necessarily represent each species as a whole) and to identify essential and dispensable genes in Naegleria evolution, diversity and biology, paving the way for further genomic and post-genomic studies.

11.
mSphere ; 6(4): e0063721, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378985

RESUMO

Out of over 40 species of Naegleria, which are free-living thermophilic amebae found in freshwater and soil worldwide, only Naegleria fowleri infects humans, causing primary amebic meningoencephalitis (PAM), a typically fatal brain disease. To understand the population structure of Naegleria species and the genetic relationships between N. fowleri isolates and to detect pathogenic factors, we characterized 52 novel clinical and environmental N. fowleri genomes and a single Naegleria lovaniensis strain, along with transcriptomic data for a subset of 37 N. fowleri isolates. Whole-genome analysis of 56 isolates from three Naegleria species (N. fowleri, N. lovaniensis, and Naegleria gruberi) identified several genes unique to N. fowleri that have previously been linked to the pathogenicity of N. fowleri, while other unique genes could be associated with novel pathogenicity factors in this highly fatal pathogen. Population structure analysis estimated the presence of 10 populations within the three Naegleria species, of which 7 populations were within N. fowleri. The whole-nuclear-genome (WNG) phylogenetic analysis showed an overall geographical clustering of N. fowleri isolates, with few exceptions, and provided higher resolution in identifying potential clusters of isolates beyond that of the traditional locus typing. There were only 34 genes that showed significant differences in gene expression between the clinical and environmental isolates. Genomic data generated in this study can be used for developing rapid molecular assays and to conduct future population-based global genomic analysis and will also be a valuable addition to genomic reference databases, where shotgun metagenomics data from routine water samples could be searched for the presence of N. fowleri strains. IMPORTANCE N. fowleri, the only known Naegleria species to infect humans, causes fatal brain disease. PAM cases from 1965 to 2016 showed <20 cases per year globally. Out of approximately 150 cases in North America since 1962, only four PAM survivors are known, yielding a >97% case fatality rate, which is critically high. Although the pathogenesis of N. fowleri has been studied for the last 50 years, pathogenetic factors that lead to human infection and breaching the blood-brain barrier remain unknown. In addition, little is known regarding the genomic diversity both within N. fowleri isolates and among Naegleria species. In this study, we generated novel genome sequences and performed comparative genomic and transcriptomic analysis of a set of 52 N. fowleri draft genome sequences from clinical and environmental isolates derived from all over the world in the last 53 years, which will help shape future genome-wide studies and develop sensitive assays for routine surveillance.


Assuntos
Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Genoma de Protozoário , Genômica/métodos , Naegleria fowleri/genética , Filogenia , Transcriptoma , Microbiologia Ambiental , Perfilação da Expressão Gênica , Humanos , Naegleria fowleri/classificação , Naegleria fowleri/isolamento & purificação , Naegleria fowleri/patogenicidade , Água/parasitologia
12.
Nat Commun ; 12(1): 3801, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155204

RESUMO

The recent emergence of strains of Neisseria gonorrhoeae associated with treatment failures to ceftriaxone, the foundation of current treatment options, has raised concerns over a future of untreatable gonorrhea. Current global data on gonococcal strains suggest that several lineages, predominately characterized by mosaic penA alleles, are associated with elevated minimum inhibitory concentrations (MICs) to extended spectrum cephalosporins (ESCs). Here we report on whole genome sequences of 813 N. gonorrhoeae isolates collected through the Gonococcal Isolate Surveillance Project in the United States. Phylogenomic analysis revealed that one persisting lineage (Clade A, multi-locus sequence type [MLST] ST1901) with mosaic penA-34 alleles, contained the majority of isolates with elevated MICs to ESCs. We provide evidence that an ancestor to the globally circulating MLST ST1901 clones potentially emerged around the early to mid-20th century (1944, credibility intervals [CI]: 1935-1953), predating the introduction of cephalosporins, but coinciding with the use of penicillin. Such results indicate that drugs with novel mechanisms of action are needed as these strains continue to persist and disseminate globally.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Genes Bacterianos/genética , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/genética , Alelos , Resistência às Cefalosporinas/efeitos dos fármacos , Resistência às Cefalosporinas/genética , Variação Genética , Genoma Bacteriano/genética , Gonorreia/epidemiologia , Gonorreia/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Neisseria gonorrhoeae/classificação , Neisseria gonorrhoeae/isolamento & purificação , Filogenia , Recombinação Genética , Análise de Sequência de DNA , Estados Unidos/epidemiologia
13.
Sex Transm Dis ; 48(8S): S78-S87, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33993166

RESUMO

BACKGROUND: The prevalence of Neisseria gonorrhoeae (GC) isolates with elevated minimum inhibitory concentrations to various antibiotics continues to rise in the United States and globally. Genomic analysis provides a powerful tool for surveillance of circulating strains, antimicrobial resistance determinants, and understanding of transmission through a population. METHODS: Neisseria gonorrhoeae isolates collected from the US Gonococcal Isolate Surveillance Project in 2018 (n = 1479) were sequenced and characterized. Whole-genome sequencing was used to identify sequence types, antimicrobial resistance profiles, and phylogenetic relationships across demographic and geographic populations. RESULTS: Genetic characterization identified that (1) 80% of the GC isolates were represented in 33 multilocus sequence types, (2) isolates clustered in 23 major phylogenetic clusters with select phenotypic and demographic prevalence, and (3) common antimicrobial resistance determinants associated with low-level or high-level decreased susceptibility or resistance to relevant antibiotics. CONCLUSIONS: Characterization of this 2018 Gonococcal Isolate Surveillance Project genomic data set, which is the largest US whole-genome sequence data set to date, sets the basis for future prospective studies, and establishes a genomic baseline of GC populations for local and national monitoring.


Assuntos
Anti-Infecciosos , Gonorreia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Genômica , Gonorreia/tratamento farmacológico , Gonorreia/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/genética , Filogenia , Estudos Prospectivos , Estados Unidos/epidemiologia
14.
Microbiol Resour Announc ; 10(15)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858935

RESUMO

We present the chromosome sequences of a Naegleria fowleri isolate from a human primary amebic meningoencephalitis (PAM) case. The genome sequences were assembled from Illumina HiSeq and PacBio sequencing data and verified with the optical mapping data. This led to the identification of 37 contigs representing 37 chromosomes in N. fowleri.

15.
mSphere ; 6(2)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658279

RESUMO

Chlamydia trachomatis, an obligately intracellular bacterium, is the most prevalent cause of bacterial sexually transmitted infections (STIs) worldwide. Numbers of U.S. infections of the urogenital tract and rectum have increased annually. Because C. trachomatis is not easily cultured, comparative genomic studies are limited, restricting our understanding of strain diversity and emergence among populations globally. While Agilent SureSelectXT target enrichment RNA bait libraries have been developed for whole-genome enrichment and sequencing of C. trachomatis directly from clinical urine, vaginal, conjunctival, and rectal samples, public access to these libraries is not available. We therefore designed an RNA bait library (34,795 120-mer probes based on 85 genomes, versus 33,619 probes using 74 genomes in a previous one) to augment organism sequencing from clinical samples that can be shared with the scientific community, enabling comparison studies. We describe the library and limit of detection for genome copy input, and we present results of 100% efficiency and high-resolution determination of recombination and identical genomes within vaginal-rectal specimen pairs in women. This workflow provides a robust approach for discerning genomic diversity and advancing our understanding of the molecular epidemiology of contemporary C. trachomatis STIs across sample types, geographic populations, sexual networks, and outbreaks associated with proctitis/proctocolitis among women and men who have sex with men.IMPORTANCEChlamydia trachomatis is an obligate intracellular bacterium that is not easily cultured, which limits our understanding of urogenital and rectal C. trachomatis transmission and impact on morbidity. To provide a publicly available workflow for whole-genome target enrichment and sequencing of C. trachomatis directly from clinical urine, vaginal, conjunctival, and rectal specimens, we developed and report on an RNA bait library to enrich the organism from clinical samples for sequencing. We demonstrate an increased efficiency in the percentage of reads mapping to C. trachomatis and identified recombinant and identical C. trachomatis genomes in paired vaginal-rectal samples from women. Our workflow provides a robust genomic epidemiologic approach to advance our understanding of C. trachomatis strains causing ocular, urogenital, and rectal infections and to explore geo-sexual networks, outbreaks of colorectal infections among women and men who have sex with men, and the role of these strains in morbidity.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Genoma Bacteriano , Reto/microbiologia , Vagina/microbiologia , Sequenciamento Completo do Genoma , Adolescente , Adulto , Feminino , Humanos , Filogenia , Adulto Jovem
16.
J Clin Microbiol ; 58(12)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32938738

RESUMO

Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis worldwide and an occasional cause of meningococcal urethritis. When isolates are unavailable for surveillance or outbreak investigations, molecular characterization of pathogens needs to be performed directly from clinical specimens, such as cerebrospinal fluid (CSF), blood, or urine. However, genome sequencing of specimens is challenging because of low bacterial and high human DNA abundances. We developed selective whole-genome amplification (SWGA), an isothermal multiple-displacement amplification-based method, to efficiently enrich, sequence, and de novo assemble N. meningitidis DNA from clinical specimens with low bacterial loads. SWGA was validated with 12 CSF specimens from invasive meningococcal disease cases and 12 urine specimens from meningococcal urethritis cases. SWGA increased the mean proportion of N. meningitidis reads by 2 to 3 orders of magnitude, enabling identification of at least 90% of the 1,605 N. meningitidis core genome loci for 50% of the specimens. The validated method was used to investigate two meningitis outbreaks recently reported in Togo and Burkina Faso. Twenty-seven specimens with low bacterial loads were processed by SWGA before sequencing, and 12 of 27 were successfully assembled to obtain the full molecular typing and vaccine antigen profile of the N. meningitidis pathogen, thus enabling thorough characterization of outbreaks. This method is particularly important for enhancing molecular surveillance in regions with low culture rates. SWGA produces enough reads for phylogenetic and allelic analysis at a low cost. More importantly, the procedure can be extended to enrich other important human bacterial pathogens.


Assuntos
Meningite Meningocócica , Infecções Meningocócicas , Neisseria meningitidis , Surtos de Doenças , Humanos , Meningite Meningocócica/epidemiologia , Infecções Meningocócicas/epidemiologia , Tipagem Molecular , Neisseria meningitidis/genética , Filogenia
17.
mSphere ; 5(2)2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269159

RESUMO

In 2015 and 2016, meningococcal carriage evaluations were conducted at two universities in the United States following mass vaccination campaigns in response to Neisseria meningitidis serogroup B (NmB) disease outbreaks. A simultaneous carriage evaluation was also conducted at a university near one of the outbreaks, where no NmB cases were reported and no mass vaccination occurred. A total of ten cross-sectional carriage evaluation rounds were conducted, resulting in 1,514 meningococcal carriage isolates collected from 7,001 unique participants; 1,587 individuals were swabbed at multiple time points (repeat participants). All isolates underwent whole-genome sequencing. The most frequently observed clonal complexes (CC) were CC198 (27.3%), followed by CC1157 (17.4%), CC41/44 (9.8%), CC35 (7.4%), and CC32 (5.6%). Phylogenetic analysis identified carriage isolates that were highly similar to the NmB outbreak strains; comparative genomics between these outbreak and carriage isolates revealed genetic changes in virulence genes. Among repeat participants, 348 individuals carried meningococcal bacteria during at least one carriage evaluation round; 50.3% retained N. meningitidis carriage of a strain with the same sequence type (ST) and CC across rounds, 44.3% only carried N. meningitidis in one round, and 5.4% acquired a new N. meningitidis strain between rounds. Recombination, point mutations, deletions, and simple sequence repeats were the most frequent genetic mechanisms found in isolates collected from hosts carrying a strain of the same ST and CC across rounds. Our findings provide insight on the dynamics of meningococcal carriage among a population that is at higher risk for invasive meningococcal disease than the general population.IMPORTANCE U.S. university students are at a higher risk of invasive meningococcal disease than the general population. The responsible pathogen, Neisseria meningitidis, can be carried asymptomatically in the oropharynx; the dynamics of meningococcal carriage and the genetic features that distinguish carriage versus disease states are not completely understood. Through our analyses, we aimed to provide data to address these topics. We whole-genome sequenced 1,514 meningococcal carriage isolates from individuals at three U.S. universities, two of which underwent mass vaccination campaigns following recent meningococcal outbreaks. We describe the within-host genetic changes among individuals carrying a strain with the same molecular type over time, the primary strains being carried in this population, and the genetic differences between closely related outbreak and carriage strains. Our results provide detailed information on the dynamics of meningococcal carriage and the genetic differences in carriage and outbreak strains, which can inform future efforts to reduce the incidence of invasive meningococcal disease.


Assuntos
Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Infecções Meningocócicas/epidemiologia , Neisseria meningitidis/genética , Filogenia , Estudos Transversais , Surtos de Doenças , Genótipo , Humanos , Infecções Meningocócicas/microbiologia , Nasofaringe/microbiologia , Neisseria meningitidis/classificação , Sorogrupo , Estudantes , Estados Unidos/epidemiologia , Universidades , Sequenciamento Completo do Genoma
18.
mBio ; 10(5)2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506309

RESUMO

The human pathogens Neisseria gonorrhoeae and Neisseria meningitidis share high genome identity. Retrospective analysis of surveillance data from New Zealand indicates the potential cross-protective effect of outer membrane vesicle (OMV) meningococcal serogroup B vaccine (MeNZB) against N. gonorrhoeae A licensed OMV-based MenB vaccine, MenB-4C, consists of a recombinant FHbp, NhbA, NadA, and the MeNZB OMV. Previous work has identified several abundantly expressed outer membrane proteins (OMPs) as major components of the MenB-4C OMV with high sequence similarity between N. gonorrhoeae and N. meningitidis, suggesting a mechanism for cross-protection. To build off these findings, we performed comparative genomic analysis on 970 recent N. gonorrhoeae isolates collected through a U.S surveillance system against N. meningitidis serogroup B (NmB) reference sequences. We identified 1,525 proteins that were common to both Neisseria species, of which 57 proteins were predicted to be OMPs using in silico methods. Among the MenB-4C antigens, NhbA showed moderate sequence identity (73%) to the respective gonococcal homolog, was highly conserved within N. gonorrhoeae, and was predicted to be surface expressed. In contrast, the gonococcal FHbp was predicted not to be surface expressed, while NadA was absent in all N. gonorrhoeae isolates. Our work confirmed recent observations (E. A. Semchenko, A. Tan, R. Borrow, and K. L. Seib, Clin Infect Dis, 2018, https://doi.org/10.1093/cid/ciy1061) and describes homologous OMPs from a large panel of epidemiologically relevant N. gonorrhoeae strains in the United States against NmB reference strains. Based on our results, we report a set of OMPs that may contribute to the previously observed cross-protection and provide potential antigen targets to guide the next steps in gonorrhea vaccine development.IMPORTANCE Gonorrhea, a sexually transmitted disease, causes substantial global morbidity and economic burden. New prevention and control measures for this disease are urgently needed, as strains resistant to almost all classes of antibiotics available for treatment have emerged. Previous reports demonstrate that cross-protection from gonococcal infections may be conferred by meningococcal serogroup B (MenB) outer membrane vesicle (OMV)-based vaccines. Among 1,525 common proteins shared across the genomes of both N. gonorrhoeae and N. meningitidis, 57 proteins were predicted to be surface expressed (outer membrane proteins [OMPs]) and thus preferred targets for vaccine development. The majority of these OMPs showed high sequence identity between the 2 bacterial species. Our results provide valuable insight into the meningococcal antigens present in the current OMV-containing MenB-4C vaccine that may contribute to cross-protection against gonorrhea and may inform next steps in gonorrhea vaccine development.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Membrana/genética , Vacinas Meningocócicas/genética , Neisseria gonorrhoeae/genética , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis/genética , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/classificação , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas , Sequência de Bases , Proteção Cruzada/imunologia , Gonorreia/prevenção & controle , Humanos , Proteínas de Membrana/imunologia , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/microbiologia , Vacinas Meningocócicas/classificação , Vacinas Meningocócicas/imunologia , Nova Zelândia , Filogenia , Porinas , Análise de Sequência , Homologia de Sequência do Ácido Nucleico
19.
Pediatrics ; 143(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30598460

RESUMO

: media-1vid110.1542/5839998266001PEDS-VA_2018-2130Video Abstract BACKGROUND: Freshman college students living in residence halls have previously been identified as being at an increased risk for meningococcal disease. In this evaluation, we assess the incidence and characteristics of meningococcal disease in college-aged young adults in the United States. METHODS: The incidence and relative risk (RR) of meningococcal disease among college students compared with noncollege students aged 18 to 24 years during 2014-2016 were calculated by using data from the National Notifiable Diseases Surveillance System and enhanced meningococcal disease surveillance. Differences in demographic characteristics and clinical features of meningococcal disease cases were assessed. Available meningococcal isolates were characterized by using slide agglutination, polymerase chain reaction, and whole genome sequencing. RESULTS: From 2014 to 2016, 166 cases of meningococcal disease occurred in persons aged 18 to 24 years, with an average annual incidence of 0.17 cases per 100 000 population. Six serogroup B outbreaks were identified on college campuses, accounting for 31.7% of serogroup B cases in college students during this period. The RR of serogroup B meningococcal (MenB) disease in college students versus noncollege students was 3.54 (95% confidence interval: 2.21-5.41), and the RR of serogroups C, W, and Y combined was 0.56 (95% confidence interval: 0.27-1.14). The most common serogroup B clonal complexes identified were CC32/ET-5 and CC41/44 lineage 3. CONCLUSIONS: Although the incidence is low, among 18- to 24-year-olds, college students are at an increased risk for sporadic and outbreak-associated MenB disease. Providers, college students, and parents should be aware of the availability of MenB vaccines.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Infecções Meningocócicas/epidemiologia , Estudantes/estatística & dados numéricos , Adolescente , Adulto , Antígenos de Bactérias/análise , DNA Bacteriano/análise , Feminino , Seguimentos , Humanos , Incidência , Masculino , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/genética , Neisseria meningitidis/imunologia , Prevalência , Estudos Retrospectivos , Estados Unidos/epidemiologia , Adulto Jovem
20.
Sci Rep ; 8(1): 15803, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361650

RESUMO

Although rare in the U.S., outbreaks due to Neisseria meningitidis do occur. Rapid, early outbreak detection is important for timely public health response. In this study, we characterized U.S. meningococcal isolates (N = 201) from 15 epidemiologically defined outbreaks (2009-2015) along with temporally and geographically matched sporadic isolates using multilocus sequence typing, pulsed-field gel electrophoresis (PFGE), and six whole genome sequencing (WGS) based methods. Recombination-corrected maximum likelihood (ML) and Bayesian phylogenies were reconstructed to identify genetically related outbreak isolates. All WGS analysis methods showed high degree of agreement and distinguished isolates with similar or indistinguishable PFGE patterns, or the same strain genotype. Ten outbreaks were caused by a single strain; 5 were due to multiple strains. Five sporadic isolates were phylogenetically related to 2 outbreaks. Analysis of 9 outbreaks using timed phylogenies identified the possible origin and estimated the approximate time that the most recent common ancestor emerged for outbreaks analyzed. U.S. meningococcal outbreaks were caused by single- or multiple-strain introduction, with organizational outbreaks mainly caused by a clonal strain and community outbreaks by divergent strains. WGS can infer linkage of meningococcal cases when epidemiological links are uncertain. Accurate identification of outbreak-associated cases requires both WGS typing and epidemiological data.


Assuntos
Surtos de Doenças , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/genética , Sequenciamento Completo do Genoma , Eletroforese em Gel de Campo Pulsado , Humanos , Neisseria meningitidis/isolamento & purificação , Filogenia , Estudos Retrospectivos , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...