Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autism Res ; 15(1): 27-41, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605202

RESUMO

Syndromic autism spectrum disorders (ASDs) are characterized by impaired social communication and repetitive/stereotyped behaviors. Currently available therapeutic agents against ASD have limited efficacy. Thus, searching for novel and effective drugs ameliorating core symptoms, in particular social deficits, is of utmost importance. Duloxetine (DLX), an antidepressant that has been identified as an agonist mimetic for the cell adhesion molecule L1, exhibits beneficial functions in vitro and in vivo. Therefore, in this study, we focused on the rapid and persistent neuroprotective function of DLX following valproic acid (VPA)-triggered hyperactivity, anxiety-like behavior and social deficits in zebrafish. Embryonic exposure to VPA reduced survival in a dose- and time-dependent manner, delayed hatching, and also resulted in a significant number of malformed larvae. After initial dose-response experiments in zebrafish larvae, 10 µM VPA exposure between 0.33 and 4.5 days post fertilization (dpf) was identified as an effective concentration that led to an early and persistent ASD-like phenotype in zebrafish. ASD-like elevated acetylcholine esterase (AChE) activity and reduced Akt-mTOR signaling was observed in zebrafish whole brain. Acute administration of DLX (4.5-6 dpf) reduced the VPA-induced ASD-like phenotype in zebrafish larvae. Additionally, such early-life acute DLX treatment had long-term effects in ameliorating social impairments, hyperactivity, and anxiety-like behaviors through adulthood. This was accompanied by reduced AChE activity and by normalized Akt-mTOR signaling. Overall, DLX treatment showed a long-term therapeutic effect on autistic-like behaviors, and alteration of AChE activity and Akt-mTOR signaling were identified as crucial in the VPA-induced ASD zebrafish model.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Animais , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Comportamento Animal , Modelos Animais de Doenças , Cloridrato de Duloxetina , Comportamento Social , Interação Social , Ácido Valproico , Peixe-Zebra
2.
Eur J Pharmacol ; 910: 174421, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34391768

RESUMO

The role of glycosaminoglycan sulfation patterns, particularly in regard to scar formation and inhibition of neuritogenesis, has been mainly studied in cell culture with a focus on chondroitin 4-sulfate. In this study, we investigated chondroitin 6-sulfate (C6S) and found that it also inhibits neurite outgrowth of mouse cerebellar granule neurons in vitro. To examine whether the inhibitory activity of C6S could be neutralized, seven previously characterized high-affinity C6S-binding peptides were tested, among which three peptides neutralized the inhibitory functions of C6S. We further investigated these peptides in a mouse model of spinal cord injury, since upregulation of C6S expression in the glial scar following injury has been associated with reduced axonal regrowth and functional recovery. We here subjected mice to severe compression injury at thoracic levels T7-T9, immediately followed by inserting gelfoam patches soaked in C6S-binding peptides or in a control peptide. Application of C6S-binding peptides led to functional recovery after injury and prevented fibrotic glial scar formation, as seen by decreased activation of astrocytes and microglia/macrophages. Decreased expression of several lecticans and deposition of fibronectin at the site of injury were also observed. Application of C6S-binding peptides led to axonal regrowth and inhibited the C6S-mediated activation of RhoA/ROCK and decrease of PI3K-Akt-mTOR signaling pathways. Taken together, these results indicate that treatment with C6S-binding peptides improves functional recovery in a mouse model of spinal cord injury.


Assuntos
Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacologia , Peptídeos/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Axônios/efeitos dos fármacos , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/uso terapêutico , Cicatriz/tratamento farmacológico , Modelos Animais de Doenças , Gliose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Locomoção/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Peptídeos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Arch Microbiol ; 203(3): 1047-1060, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33136174

RESUMO

Latcripin-16 (Lp16-PSP) is a gene that was extracted as a result of de novo characterization of the Lentinula edodes strain C91-3 transcriptome. The aim of the present study was to clone, express, and investigate the selective in vitro anticancer potential of Lp16-PSP in human cell lines. Lp16-PSP was analyzed using bioinformatics tools, cloned in a prokaryotic expression vector pET32a (+) and transformed into E. coli Rosetta gami. It was expressed and solubilized under optimized conditions. The differential scanning fluorometry (DSF)-guided refolding method was used with modifications to identify the proper refolding conditions for the Lp16-PSP protein. To determine the selective anticancer potential of Lp16-PSP, a panel of human cancerous and non-cancerous cell lines was used. Lp16-PSP protein was identified as endoribonuclease L-PSP protein and a member of the highly conserved YjgF/YER057c/UK114 protein superfamily. Lp16-PSP was expressed under optimized conditions (37 °C for 4 h following induction with 0.5 mM isopropyl ß-D-1-thiogalactopyranoside). Solubilization was achieved with mild solubilization buffer containing 2 M urea using the freeze-thaw method. The DSF guided refolding method identified the proper refolding conditions (50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, 400 mM Arginine, 0.2 mM GSH and 2 mM GSSG; pH 8.0) for Lp16-PSP, with a melting transition of ~ 58 °C. A final yield of ~ 16 mg of purified Lp16-PSP from 1 L of culture was obtained following dialysis and concentration by PEG 20,000. A Cell Counting Kit-8 assay revealed the selective cytotoxic effect of Lp16-PSP. The HL-60 cell line was demonstrated to be most sensitive to Lp16-PSP, with an IC50 value of 74.4 ± 1.07 µg/ml. The results of the present study suggest that Lp16-PSP may serve as a potential anticancer agent; however, further investigation is required to characterize this anticancer effect and to elucidate the molecular mechanism underlying the action of Lp16-PSP.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacologia , Proteínas Recombinantes/farmacologia , Cogumelos Shiitake/química , Cogumelos Shiitake/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/genética , Expressão Gênica , Humanos , Proteínas Recombinantes/genética
4.
Front Neurosci ; 14: 458, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547358

RESUMO

Besides several endogenous elements, exogenous factors, including exposure to pesticides, have been recognized as putative factors contributing to the onset and development of neurodegenerative diseases, including Parkinson's disease (PD). Considering the availability, success rate, and limitations associated with the current arsenals to fight PD, there is an unmet need for novel therapeutic interventions. Therefore, based on the previously reported beneficial functions of the L1 cell adhesion molecule, we hypothesized that L1 mimetic compounds may serve to neutralize neurotoxicity triggered by the pesticide paraquat (PQ). In this study, we attempt to use PQ for inducing PD-like pathology and the L1 mimetic compounds phenelzine sulfate (PS) and tacrine (TC) as potential candidates for the amelioration of PD symptoms using zebrafish as a model system. Administration of PQ together with the L1 mimetic compounds PS or TC (250 nM) improved survival of zebrafish larvae, protected them from locomotor deficits, and increased their sensorimotor reflexes. Moreover, application of PQ together with PS (500 nM) or TC (1000 nM) in adult zebrafish counteracted PQ-induced toxicity, maintaining normal locomotor functions and spatial memory in an open field and T-maze task, respectively. Both L1 mimetic compounds prevented reduction in tyrosine hydroxylase and dopamine levels, reduced reactive oxygen species (ROS) generation, protected against impairment of mitochondrial viability, improved the antioxidant enzyme system, and prevented a decrease in ATP levels. Altogether, our findings highlight the beneficial functions of the agonistic L1 mimetics PS and TC by improving several vital cell functions against PQ-triggered neurotoxicity.

5.
Int J Mol Sci ; 19(10)2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30274346

RESUMO

Present study aimed to elucidate the anticancer effect and the possible molecular mechanism underlying the action of Latcripin 1 (LP1), from the mushroom Lentinula edodes strain C91-3 against gastric cancer cell lines SGC-7901 and BGC-823. Cell viability was measured by Cell Counting Kit-8 (CCK-8); morphological changes were observed by phase contrast microscope; autophagy was determined by transmission electron microscope and fluorescence microscope. Apoptosis and cell cycle were assessed by flow cytometer; wound-healing, transwell migration and invasion assays were performed to investigate the effect of LP1 on gastric cancer cell's migration and invasion. Herein, we found that LP1 resulted in the induction of autophagy by the formation of autophagosomes and conversion of light chain 3 (LC3I into LC3II. LP1 up-regulated the expression level of autophagy-related gene (Atg7, Atg5, Atg12, Atg14) and Beclin1; increased and decreased the expression level of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) proteins respectively, along with the activation of Caspase-3. At lower-doses, LP1 have shown to arrest cells in the S phase of the cell cycle and decreased the expression level of matrix metalloproteinase MMP-2 and MMP-9. In addition, it has also been shown to regulate the phosphorylation of one of the most hampered gastric cancer pathway, that is, protein kinase B/mammalian target of rapamycin (Akt/mTOR) channel and resulted in cell death. These findings suggested LP1 as a potential natural anti-cancer agent, for exploring the gastric cancer therapies and as a contender for further in vitro and in vivo investigations.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas Fúngicas/farmacologia , Cogumelos Shiitake/química , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fase S/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Cicatrização/efeitos dos fármacos
6.
Nutrients ; 10(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065236

RESUMO

Despite the tremendous biological activity of polysaccharides from the mushroom Dictyophora indusiata, its role in the restoration of gut microbiota has not yet been explored. The present study aimed to investigate whether D. indusiata polysaccharide (DIP) could modulate the recovery of gut microbiota composition and intestinal barrier function after broad-spectrum antibiotic-driven dysbiosis. Alteration and restoration in the microbial communities were elucidated by the Illumina MiSeq platform. Colon histology, expression of tight-junction associated proteins, and serum/tissue endotoxin and cytokine levels were evaluated. Two-week daily oral administration of clindamycin and metronidazole resulted in reduced bacterial diversity and richness, and perturbed the microbial flora at various taxonomic levels (altered Firmicutes/Bacteroidetes ratio and increased relative abundance of harmful flora (Proteobacteria, Enterococcus, and Bacteroides)), whereas DIP administration reversed the dysbiosis and increased beneficial flora, including Lactobacillaceae (lactic acid-producing bacteria), and Ruminococaceae (butyrate-producing bacteria). In addition, it resulted in the reduction of endotoxemia (through lipopolysaccharides (LPSs)) and pro-inflammatory cytokine (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1ß (IL-1ß)) levels, with the increased expression of tight-junction associated proteins (claudin-1, occludin, and zonula occludens-1). These findings not only suggested a comprehensive understanding of the protective effects of a DIP in the restoration of gut microbiota but also highlighted its role in the enhancement of gut barrier integrity, reduction of inflammation and lowering of endotoxin levels in mice.


Assuntos
Agaricales , Clindamicina , Polissacarídeos Fúngicos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Enteropatias/prevenção & controle , Intestinos/efeitos dos fármacos , Metronidazol , Prebióticos , Agaricales/química , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Disbiose , Endotoxinas/metabolismo , Fezes/microbiologia , Polissacarídeos Fúngicos/isolamento & purificação , Mediadores da Inflamação/metabolismo , Enteropatias/induzido quimicamente , Enteropatias/microbiologia , Enteropatias/fisiopatologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Intestinos/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Permeabilidade , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
7.
Int J Mol Sci ; 19(5)2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735884

RESUMO

Malignant ascites is a highly severe and intractable complication of advanced or recurrent malignant tumors that is often immunotherapy-resistant. Rhizoma Pleionis is widely used in traditional medicine as an antimicrobial and anticancer agent, but its effectiveness in treating malignant ascites is unclear. In the current study, we investigated the effect of polysaccharides isolated from Rhizoma Pleionis (PRP) on murine hepatocarcinoma H22 cells in an ascites model. We have found that the main components of PRP, that presented a relative molecular weight of 383.57 kDa, were mannose and glucose. We also found that PRP reduced the occurrence of abdominal ascites and increased survival in our mouse model. An immune response in the ascites tumor model was observed by performing a lymphocytes proliferation experiment and an E-rosette test. The ratios of CD8+ cytotoxic T cells and NK cells in the spleen were examined by flow cytometry, and the mRNA expression of Foxp3+in CD4⁺CD25⁺ (T regulatory Tregs) was measured by RT-PCR (reverse transcription-polymerase chain reaction). The levels of the cytokines TNF-α (tumor necrosis factor), VEGF (vascular endothelial growth factor), IL-2 (interleukin), and IFN-γ (interferon) in the serum and ascites supernatants were measured by ELISA. The expression of Foxp3 and Stat3 in peritoneal cells in the mouse model was measured by immunocytochemistry. The results indicated that PRP increased H22 tumor cell apoptosis in vivo by activating and enhancing the immune response. Furthermore, the effects of PRP on the proliferation of H22 cells were assessed by the CCK8 assay, Hoechest 33258, and TUNEL staining in vitro. We found that PRP suppressed the proliferation of H22 tumor cells but had no effect on BRL (Big rat liver) -3A rat hepatoma normal cells in vitro. Next, we investigated the underlying immunological mechanism by which PRP inhibits malignant ascites. PRP induced tumor cell apoptosis by inhibiting the Jak1⁻Stat3 pathway and by activating Caspase-3 and Caspase-8 to increase the Bax/Bcl-2 ratio. Collectively, our results indicate that PRP exhibits significant antitumor properties in H22 cells in vivo and in vitro, indicating that PRP may be used as a new therapeutic drug for cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Ascite/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Orchidaceae/química , Polissacarídeos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Ascite/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/química , Rizoma/química
8.
Appl Microbiol Biotechnol ; 102(5): 2363-2377, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29387954

RESUMO

The formation of inclusion bodies (IBs) is considered as an Achilles heel of heterologous protein expression in bacterial hosts. Wide array of techniques has been developed to recover biochemically challenging proteins from IBs. However, acquiring the active state even from the same protein family was found to be an independent of single established method. Here, we present a new strategy for the recovery of wide sub-classes of recombinant protein from harsh IBs. We found that numerous methods and their combinations for reducing IB formation and producing soluble proteins were not effective, if the inclusion bodies were harsh in nature. On the other hand, different practices with mild solubilization buffers were able to solubilize IBs completely, yet the recovery of active protein requires large screening of refolding buffers. With the integration of previously reported mild solubilization techniques, we proposed an improved method, which comprised low sarkosyl concentration, ranging from 0.05 to 0.1% coupled with slow freezing (- 1 °C/min) and fast thaw (room temperature), resulting in greater solubility and the integrity of solubilized protein. Dilution method was employed with single buffer to restore activity for every sub-class of recombinant protein. Results showed that the recovered protein's activity was significantly higher compared with traditional solubilization/refolding approach. Solubilization of IBs by the described method was proved milder in nature, which restored native-like conformation of proteins within IBs.


Assuntos
Fracionamento Químico/métodos , Escherichia coli/química , Corpos de Inclusão/química , Proteínas Recombinantes/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cogumelos Shiitake/genética , Solubilidade
9.
Integr Cancer Ther ; 17(2): 200-209, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29094602

RESUMO

Cancer is the leading cause of morbidity and mortality around the globe. For certain types of cancer, chemotherapy drugs have been extensively used for treatment. However, severe side effects and the development of resistance are the drawbacks of these agents. Therefore, development of new agents with no or minimal side effects is of utmost importance. In this regard, natural compounds are well recognized as drugs in several human ailments, including cancer. One class of fungi, "mushrooms," contains numerous compounds that exhibit interesting biological activities, including antitumor activity. Many researchers, including our own group, are focusing on the anticancer potential of different mushrooms and the underlying molecular mechanism behind their action. The aim of this review is to discuss PI3K/AKT, Wnt-CTNNB1, and NF-κB signaling pathways, the occurrence of genetic alterations in them, the association of these aberrations with different human cancers and how different nodes of these pathways are targeted by various substances of mushroom origin. We have given evidence to propose the therapeutic attributes and possible mode of molecular actions of various mushroom-originated compounds. However, anticancer effects were typically demonstrated in in vitro and in vivo models and very limited number of studies have been conducted in the human population. It is our belief that this review will help the research community in designing concrete preclinical and clinical studies to test the anticancer potential of mushroom-originated compounds on different cancers harboring particular genetic alteration(s).


Assuntos
Agaricales/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Transdução de Sinais/efeitos dos fármacos
10.
Exp Ther Med ; 14(5): 4328-4338, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29104645

RESUMO

Pseudomonas aeruginosa is a ubiquitous Gram negative opportunistic pathogen capable of causing severe nosocomial infections in humans, and tobramycin is currently used to treat P. aeruginosa associated lung infections. Quorum sensing regulates biofilm formation which allows the bacterium to result in fatal infections forcing clinicians to extensively use antibiotics to manage its infections leading to emerging multiple drug resistant strains. As a result, tobramycin is also becoming resistant. Despite extensive studies on drug discovery to alleviate microbial drug resistance, the continued microbial evolution has forced researchers to focus on screening various phytochemicals and dietary compounds for antimicrobial potential. Linolenic acid (LNA) is an essential fatty acid that possesses antimicrobial actions on various microorganisms. It was hypothesized that LNA may affect the formation of biofilm on P. aeruginosa and improve the potency of tobramycin. The present study demonstrated that LNA interfered with cell-to-cell communication and reduced virulence factor production. It further enhanced the potency of tobramycin and synergistically inhibited biofilm formation through P. aeruginosa quorum sensing systems. Therefore, LNA may be considered as a potential agent for adjunctive therapy and its utilization may decrease tobramycin concentration in combined treatment thereby reducing aminoglycoside adverse effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...