Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(24): 3353-3360, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721533

RESUMO

Barth syndrome (BTHS) is a debilitating X-linked cardio-skeletal myopathy caused by loss-of-function mutations in TAFAZZIN, a cardiolipin (CL)-remodeling enzyme required for the maintenance of normal levels of CL species in mitochondrial membranes. At present, how perturbations in CL abundance and composition lead to many debilitating clinical presentations in BTHS patients have not been fully elucidated. Inspired by our recent findings that CL is essential for optimal mitochondrial calcium uptake, we measured the levels of other biologically important metal ions in BTHS mitochondria and found that in addition to calcium, magnesium levels are significantly reduced. Consistent with this observation, we report a decreased abundance of the mitochondrial magnesium influx channel MRS2 in multiple models of BTHS including yeast, murine myoblast, and BTHS patient cells and cardiac tissue. Mechanistically, we attribute reduced steady-state levels of MRS2 to its increased turnover in CL-deficient BTHS models. By expressing Mrs2 in well-characterized yeast mutants of the phospholipid biosynthetic pathways, we demonstrate a specific requirement of CL for Mrs2 abundance and assembly. Finally, we provide in vitro evidence for the direct binding of CL with human MRS2. Together, our study has identified a critical requirement of CL for MRS2 stability and suggests perturbation of mitochondrial magnesium homeostasis as a novel contributing factor to BTHS pathology.


Assuntos
Síndrome de Barth , Humanos , Animais , Camundongos , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Síndrome de Barth/patologia , Cardiolipinas/genética , Cardiolipinas/metabolismo , Magnésio/metabolismo , Saccharomyces cerevisiae/metabolismo , Cálcio/metabolismo , Fatores de Transcrição/genética , Mitocôndrias/metabolismo , Aciltransferases/genética
2.
J Cell Sci ; 136(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655851

RESUMO

Studies of rare human genetic disorders of mitochondrial phospholipid metabolism have highlighted the crucial role that membrane phospholipids play in mitochondrial bioenergetics and human health. The phospholipid composition of mitochondrial membranes is highly conserved from yeast to humans, with each class of phospholipid performing a specific function in the assembly and activity of various mitochondrial membrane proteins, including the oxidative phosphorylation complexes. Recent studies have uncovered novel roles of cardiolipin and phosphatidylethanolamine, two crucial mitochondrial phospholipids, in organismal physiology. Studies on inter-organellar and intramitochondrial phospholipid transport have significantly advanced our understanding of the mechanisms that maintain mitochondrial phospholipid homeostasis. Here, we discuss these recent advances in the function and transport of mitochondrial phospholipids while describing their biochemical and biophysical properties and biosynthetic pathways. Additionally, we highlight the roles of mitochondrial phospholipids in human health by describing the various genetic diseases caused by disruptions in their biosynthesis and discuss advances in therapeutic strategies for Barth syndrome, the best-studied disorder of mitochondrial phospholipid metabolism.


Assuntos
Metabolismo dos Lipídeos , Mitocôndrias , Humanos , Membranas Mitocondriais , Fosfolipídeos , Transporte Biológico , Doenças Raras
3.
Hum Mol Genet ; 31(3): 376-385, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34494107

RESUMO

Calcium signaling via mitochondrial calcium uniporter (MCU) complex coordinates mitochondrial bioenergetics with cellular energy demands. Emerging studies show that the stability and activity of the pore-forming subunit of the complex, MCU, is dependent on the mitochondrial phospholipid, cardiolipin (CL), but how this impacts calcium-dependent mitochondrial bioenergetics in CL-deficiency disorder like Barth syndrome (BTHS) is not known. Here we utilized multiple models of BTHS including yeast, mouse muscle cell line, as well as BTHS patient cells and cardiac tissue to show that CL is required for the abundance and stability of the MCU-complex regulatory subunit MICU1. Interestingly, the reduction in MICU1 abundance in BTHS mitochondria is independent of MCU. Unlike MCU and MICU1/MICU2, other subunit and associated factor of the uniporter complex, EMRE and MCUR1, respectively, are not affected in BTHS models. Consistent with the decrease in MICU1 levels, we show that the kinetics of MICU1-dependent mitochondrial calcium uptake is perturbed and acute stimulation of mitochondrial calcium signaling in BTHS myoblasts fails to activate pyruvate dehydrogenase, which in turn impairs the generation of reducing equivalents and blunts mitochondrial bioenergetics. Taken together, our findings suggest that defects in mitochondrial calcium signaling could contribute to cardiac and skeletal muscle pathologies observed in BTHS patients.


Assuntos
Síndrome de Barth , Cálcio , Animais , Síndrome de Barth/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
J Biol Chem ; 296: 100539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33722607

RESUMO

Phosphatidylethanolamine (PE) is essential for mitochondrial respiration in yeast, Saccharomyces cerevisiae, whereas the most abundant mitochondrial phospholipid, phosphatidylcholine (PC), is largely dispensable. Surprisingly, choline (Cho), which is a biosynthetic precursor of PC, has been shown to rescue the respiratory growth of mitochondrial PE-deficient yeast; however, the mechanism underlying this rescue has remained unknown. Using a combination of yeast genetics, lipid biochemistry, and cell biological approaches, we uncover the mechanism by showing that Cho rescues mitochondrial respiration by partially replenishing mitochondrial PE levels in yeast cells lacking the mitochondrial PE-biosynthetic enzyme Psd1. This rescue is dependent on the conversion of Cho to PC via the Kennedy pathway as well as on Psd2, an enzyme catalyzing PE biosynthesis in the endosome. Metabolic labeling experiments reveal that in the absence of exogenously supplied Cho, PE biosynthesized via Psd2 is mostly directed to the methylation pathway for PC biosynthesis and is unavailable for replenishing mitochondrial PE in Psd1-deleted cells. In this setting, stimulating the Kennedy pathway for PC biosynthesis by Cho spares Psd2-synthesized PE from the methylation pathway and redirects it to the mitochondria. Cho-mediated elevation in mitochondrial PE is dependent on Vps39, which has been recently implicated in PE trafficking to the mitochondria. Accordingly, epistasis experiments placed Vps39 downstream of Psd2 in Cho-based rescue. Our work, thus, provides a mechanism of Cho-based rescue of mitochondrial PE deficiency and uncovers an intricate interorganelle phospholipid regulatory network that maintains mitochondrial PE homeostasis.


Assuntos
Carboxiliases/deficiência , Colina/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento
5.
Cell Chem Biol ; 28(8): 1169-1179.e6, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33571455

RESUMO

In humans, lysophosphatidylserines (lyso-PSs) are potent lipid regulators of important immunological processes. Given their structural diversity and commercial paucity, here we report the synthesis of methyl esters of lyso-PS (Me-lyso-PSs) containing medium- to very-long-chain (VLC) lipid tails. We show that Me-lyso-PSs are excellent substrates for the lyso-PS lipase ABHD12, and that these synthetic lipids are acted upon by cellular carboxylesterases to produce lyso-PSs. Next, in macrophages we demonstrate that VLC lyso-PSs orchestrate pro-inflammatory responses and in turn neuroinflammation via a Toll-like receptor 2 (TLR2)-dependent pathway. We also show that long-chain (LC) lyso-PSs robustly induce intracellular cyclic AMP production, cytosolic calcium influx, and phosphorylation of the nodal extracellular signal-regulated kinase to regulate macrophage activation via a TLR2-independent pathway. Finally, we report that LC lyso-PSs potently elicit histamine release during the mast cell degranulation process, and that ABHD12 is the major lyso-PS lipase in these immune cells.


Assuntos
Ácidos Graxos/imunologia , Lisofosfolipídeos/imunologia , Animais , Células Cultivadas , Ácidos Graxos/química , Feminino , Histamina/imunologia , Humanos , Lipídeos/química , Lipídeos/imunologia , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Macrófagos/imunologia , Masculino , Mastócitos/imunologia , Camundongos , Monoacilglicerol Lipases/metabolismo , Especificidade por Substrato
6.
Biochemistry ; 59(24): 2299-2311, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32462874

RESUMO

Lysophosphatidylserine (lyso-PS), a lysophospholipid derived from phosphatidylserine (PS), has emerged as a potent signaling lipid in mammalian physiology. In vivo, the metabolic serine hydrolases ABHD16A and ABHD12 are major lipases that biosynthesize and degrade lyso-PS, respectively. Of biomedical relevance, deleterious mutations to ABHD12 cause accumulation of lyso-PS in the brain, and this deregulated lyso-PS metabolism leads to the human genetic neurological disorder PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract). While the roles of ABHD16A and ABHD12 in lyso-PS metabolism in the mammalian brain are well established, the anatomical and (sub)cellular localizations of both lipases and the functional cross-talk between them with respect to regulating lyso-PS lipids remain under investigated. Here, using subcellular organelle fractionation, biochemical assays, and immunofluorescence-based high-resolution microscopy, we show that the PS lipase ABHD16A is an endoplasmic reticulum-localized enzyme, an organelle intricately regulating cellular PS levels. In addition, leveraging immunohistochemical analysis using genetic ABHD16A and ABHD12 knockout mice as important controls, we map the anatomical distribution of both of these lipases in tandem in the murine brain and show for the first time the distinct localization of these lipases to different regions and cells of the cerebellum. We complement the aforementioned immunohistochemical studies by quantitatively measuring lyso-PS concentrations in various brain regions using mass spectrometry and find that the cerebellar lyso-PS levels are most affected by deletion of ABHD16A (decreased) or ABHD12 (increased). Taken together, our studies provide new insights into lyso-PS signaling in the cerebellum, the most atrophic brain region in human PHARC subjects.


Assuntos
Ataxia/metabolismo , Catarata/metabolismo , Cerebelo/metabolismo , Lisofosfolipídeos/metabolismo , Monoacilglicerol Lipases/metabolismo , Polineuropatias/metabolismo , Retinose Pigmentar/metabolismo , Animais , Ataxia/genética , Ataxia/patologia , Ataxia/fisiopatologia , Catarata/genética , Catarata/patologia , Catarata/fisiopatologia , Linhagem Celular , Cerebelo/patologia , Cerebelo/fisiopatologia , Humanos , Lisofosfolipídeos/genética , Camundongos , Camundongos Knockout , Monoacilglicerol Lipases/genética , Polineuropatias/genética , Polineuropatias/patologia , Polineuropatias/fisiopatologia , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Retinose Pigmentar/fisiopatologia
7.
J Cell Biol ; 218(11): 3697-3713, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31604801

RESUMO

Triglyceride-rich lipid droplets (LDs) are catabolized with high efficiency in hepatocytes to supply fatty acids for producing lipoprotein particles. Fasting causes a massive influx of adipose-derived fatty acids into the liver. The liver in the fasted state is therefore bloated with LDs but, remarkably, still continues to secrete triglycerides at a constant rate. Here we show that insulin signaling elevates phosphatidic acid (PA) dramatically on LDs in the fed state. PA then signals to recruit kinesin-1 motors, which transport LDs to the peripherally located smooth ER inside hepatocytes, where LDs are catabolized to produce lipoproteins. This pathway is down-regulated homeostatically when fasting causes insulin levels to drop, thus preventing dangerous elevation of triglycerides in the blood. Further, we show that a specific peptide against kinesin-1 blocks triglyceride secretion without any apparent deleterious effects on cells. Our work therefore reveals fundamental mechanisms that maintain lipid homeostasis across metabolic states and leverages this knowledge to propose a molecular target against hyperlipidemia.


Assuntos
Insulina/metabolismo , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Fígado/citologia , Ratos , Ratos Sprague-Dawley
8.
Nat Chem Biol ; 15(2): 169-178, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643283

RESUMO

Reactive oxygen species (ROS) are transient, highly reactive intermediates or byproducts produced during oxygen metabolism. However, when innate mechanisms are unable to cope with sequestration of surplus ROS, oxidative stress results, in which excess ROS damage biomolecules. Oxidized phosphatidylserine (PS), a proapoptotic 'eat me' signal, is produced in response to elevated ROS, yet little is known regarding its chemical composition and metabolism. Here, we report a small molecule that generates ROS in different mammalian cells. We used this molecule to detect, characterize and study oxidized PS in mammalian cells. We developed a chemical-genetic screen to identify enzymes that regulate oxidized PS in mammalian cells and found that the lipase ABHD12 hydrolyzes oxidized PS. We validated these findings in different physiological settings including primary peritoneal macrophages and brains from Abhd12-/- mice under inflammatory stress, and in the process, we functionally annotated an enzyme regulating oxidized PS in vivo.


Assuntos
Monoacilglicerol Lipases/fisiologia , Fosfatidilserinas/metabolismo , Animais , Linhagem Celular , Humanos , Lipase/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Monoacilglicerol Lipases/metabolismo , Oxirredução , Estresse Oxidativo , Fosfatidilserinas/fisiologia , Células RAW 264.7 , Espécies Reativas de Oxigênio
9.
J Biol Chem ; 293(44): 16953-16963, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30237167

RESUMO

Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) is a rare genetic human neurological disorder caused by null mutations to the Abhd12 gene, which encodes the integral membrane serine hydrolase enzyme ABHD12. Although the role that ABHD12 plays in PHARC is understood, the thorough biochemical characterization of ABHD12 is lacking. Here, we report the facile synthesis of mono-1-(fatty)acyl-glycerol lipids of varying chain lengths and unsaturation and use this lipid substrate library to biochemically characterize recombinant mammalian ABHD12. The substrate profiling study for ABHD12 suggested that this enzyme requires glycosylation for optimal activity and that it has a strong preference for very-long-chain lipid substrates. We further validated this substrate profile against brain membrane lysates generated from WT and ABHD12 knockout mice. Finally, using cellular organelle fractionation and immunofluorescence assays, we show that mammalian ABHD12 is enriched on the endoplasmic reticulum membrane, where most of the very-long-chain fatty acids are biosynthesized in cells. Taken together, our findings provide a biochemical explanation for why very-long-chain lipids (such as lysophosphatidylserine lipids) accumulate in the brains of ABHD12 knockout mice, which is a murine model of PHARC.


Assuntos
Ataxia/enzimologia , Catarata/enzimologia , Lipídeos/química , Monoacilglicerol Lipases/química , Polineuropatias/enzimologia , Retinose Pigmentar/enzimologia , Animais , Ataxia/genética , Ataxia/metabolismo , Encéfalo/enzimologia , Encéfalo/metabolismo , Catarata/genética , Catarata/metabolismo , Humanos , Cinética , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Knockout , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Polineuropatias/genética , Polineuropatias/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...