Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heart Lung Circ ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704332

RESUMO

AIMS: Recent reports of myocardial recovery after mechanical unloading with left ventricular assist devices (LVADs) have challenged the prevailing notion that end-stage heart failure (HF) is irreversible. To improve our understanding of this phenomenon, we comprehensively analysed the structural, functional, and energetic changes in failing human cardiomyocytes after LVAD implantation. METHODS: Based on a prospectively registered protocol (PROSPERO-CRD42022380214), 30 eligible studies were identified from 940 records with a pooled population of 648 patients predominantly with non-ischaemic cardiomyopathy. RESULTS: LVAD led to a substantial regression in myocyte size similar to that of donor hearts (standardised mean difference, -1.29; p<0.001). The meta-regression analysis revealed that HF duration was a significant modifier on the changes in myocyte size. There were some suggestions of fibrosis reversal (-5.17%; p=0.009); however, this was insignificant after sensitivity analysis. Developed force did not improve in cardiac trabeculae (n=5 studies); however, non-physiological isometric contractions were tested. At the myocyte level (n=4 studies), contractile kinetics improved where the time-to-peak force reduced by 41.7%-50.7% and time to 50% relaxation fell by 47.4%-62.1% (p<0.05). Qualitatively, LVAD enhanced substrate utilisation and mitochondrial function (n=6 studies). Most studies were at a high risk of bias. CONCLUSION: The regression of maladaptive hypertrophy, partial fibrosis reversal, and normalisation in metabolic pathways after LVAD may be a testament to the heart's remarkable plasticity, even in the advanced stages of HF. However, inconsistencies exist in force-generating capabilities. Using more physiological force-length work-loop assays, addressing the high risks of bias and clinical heterogeneity are crucial to better understand the phenomenon of reverse remodelling.

2.
Curr Heart Fail Rep ; 20(3): 179-190, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37160641

RESUMO

The contribution of the vasculature in the development and progression of heart failure (HF) syndromes is poorly understood and often neglected. Incorporating both arterial and venous systems, the vasculature plays a significant role in the regulation of blood flow throughout the body in meeting its metabolic requirements. A deterioration or imbalance between the cardiac and vascular interaction can precipitate acute decompensated HF in both preserved and reduced ejection fraction phenotypes. This is characterised by the increasingly recognised concept of ventricular-arterial coupling: a well-balanced relationship between ventricular and vascular stiffness, which has major implications in HF. Often, the cause of decompensation is unknown, with international guidelines mainly centred on arrhythmia, infection, acute coronary syndrome and its mechanical complications as common causes of decompensation; the vascular component is often underrecognised. A better understanding of the vascular contribution in cardiovascular failure can improve risk stratification, earlier diagnosis and facilitate earlier optimal treatment. This review focuses on the role of the vasculature by integrating the concepts of ventricular-arterial coupling, arterial stiffness and venous return in a failing heart.


Assuntos
Insuficiência Cardíaca , Humanos , Volume Sistólico/fisiologia , Ventrículos do Coração , Hemodinâmica
3.
Eur Heart J Case Rep ; 5(3): ytab089, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34113768

RESUMO

BACKGROUND: There is already extensive literature on the natural history of hypertensive heart disease (HHD) and aortic stenosis (AS). Once these patients develop severe left ventricular systolic dysfunction (LVSD) despite guideline-directed therapy for heart failure (HF), it is often thought to be end-stage from irreversible adverse remodelling. Our case series challenges this traditional paradigm. A more holistic model that factors in the interactions between the ventricle and vasculature is required. Based on a novel hypothetical concept of myocardial fatigue, we propose that occasionally LVSD is not an inherent myocardial or valvular disease but a consequence of an arterial afterload mismatch. By addressing this, the ventricle may recover and contract efficiently in unison with the arterial system. CASE SUMMARY: We present two cases of severe LVSD in a young lady with long-standing essential hypertension and a gentleman with stable severe AS. Both patients were already established on HF medications. After optimizing their blood pressure control, repeat echocardiography revealed normalization of left ventricular ejection fraction within 3 months, along with a demonstrable improvement in ventricular-arterial coupling and for AS, a reduction in valvular-arterial impedance. DISCUSSION: Just as Frank-Starling's law was discovered by initially drawing analogies to skeletal muscle behaviour, it is biologically plausible that cardiac fatigue can occur in the setting of afterload mismatch. The chance of recovery rests upon early recognition before it transitions to irreversible myocardial damage. Only by testing new emerging theories of HF can we galvanize original research and find new avenues to understanding this complex syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...