Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbes Infect ; 26(4): 105333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570086

RESUMO

Cerebral malaria (CM) induced by Plasmodium falciparum is a devastating neurological complication that may lead the patient to coma and death. This study aimed to protect Plasmodium-infected C57BL6 mice from CM by targeting the angiotensin II type 1 (AT1) receptor, which is considered the common connecting link between hypertension and CM. In CM, AT-1 mediates blood-brain barrier (BBB) damage through the overexpression of ß-catenin. The AT-1-inhibiting drugs, such as irbesartan and losartan, were evaluated for the prevention of CM. The effectiveness of these drugs was determined by the down regulation of ß-catenin, TCF, LEF, ICAM-1, and VCAM-1 in the drug-treated groups. The expression levels of VE-cadherin and vinculin, essential for the maintenance of BBB integrity, were found to be restored in the drug-treated groups. The pro-inflammatory cytokine levels were decreased, and the anti-inflammatory cytokine levels increased with the treatment. As a major highlight, the mean survival time of treated mice was found to be increased even in the absence of treatment with an anti-malarial agent. The combination of irbesartan or losartan with the anti-malarial agent α/ß-arteether has contributed to an 80% cure rate, which is higher than the 60% cure rate observed with α/ß-arteether alone treatment.


Assuntos
Modelos Animais de Doenças , Irbesartana , Malária Cerebral , Camundongos Endogâmicos C57BL , Animais , Camundongos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/parasitologia , Barreira Hematoencefálica/efeitos dos fármacos , Citocinas/metabolismo , Irbesartana/farmacologia , Irbesartana/uso terapêutico , Losartan/farmacologia , Losartan/uso terapêutico , Malária Cerebral/tratamento farmacológico , Malária Cerebral/parasitologia , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensinas/metabolismo
2.
Pathogens ; 12(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37887758

RESUMO

Malaria, a life-threatening mosquito-borne disease caused by Plasmodium parasites, continues to pose a significant global health burden. Despite notable progress in combating the disease in recent years, malaria remains prevalent in many regions, particularly in Southeast Asia and most of sub-Saharan Africa, where it claims hundreds of thousands of lives annually. Flavonoids, such as the baicalein class of compounds, are known to have antimalarial properties. In this study, we rationally designed and synthesized a series of baicalein derivatives and identified a lead compound, FNDR-10132, that displayed potent in vitro antimalarial activity against Plasmodium falciparum (P. falciparum), both chloroquine-sensitive (60 nM) and chloroquine-resistant (177 nM) parasites. FNDR-10132 was evaluated for its antimalarial activity in vivo against the chloroquine-resistant strain Plasmodium yoelii N67 in Swiss mice. The oral administration of 100 mg/kg of FNDR-10132 showed 44% parasite suppression on day 4, with a mean survival time of 13.5 ± 2.3 days vs. 8.4 ± 2.3 days of control. Also, FNDR-10132 displayed equivalent activity against the resistant strains of P. falciparum in the 200-300 nM range. This study offers a novel series of antimalarial compounds that could be developed into potent drugs against chloroquine-resistant malarial parasites through further chemistry and DMPK optimization.

3.
Eur J Med Chem ; 254: 115340, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37054559

RESUMO

In the pursuance of novel scaffolds with promising antiplasmodial and anti-inflammatory activity, a series of twenty-one compounds embraced with most promising penta-substituted pyrrole and biodynamic hydroxybutenolide in single skeleton was designed and synthesized. These pyrrole-hydroxybutenolide hybrids were evaluated against Plasmodium falciparum parasite. Four hybrids 5b, 5d, 5t and 5u exhibited good activity with IC50 of 0.60, 0.88, 0.97 and 0.96 µM for chloroquine sensitive (Pf3D7) strain and 3.92, 4.31, 4.21 and 1.67 µM for chloroquine resistant (PfK1) strain, respectively. In vivo efficacy of 5b, 5d, 5t and 5u was studied against the P. yoelii nigeriensis N67 (a chloroquine-resistant) parasite in Swiss mice at a dose of 100 mg/kg/day for 4 days via oral route. 5u was found to show maximum 100% parasite inhibition with considerably increased mean survival time. Simultaneously, the series of compounds was screened for anti-inflammatory potential. In preliminary assays, nine compounds showed more than 85% inhibition in hu-TNFα cytokine levels in LPS stimulated THP-1 monocytes and seven compounds showed more than 40% decrease in fold induction in reporter gene activity analyzed via Luciferase assay. 5p and 5t were found to be most promising amongst the series, thus were taken up for further in vivo studies. Wherein, mice pre-treated with them showed a dose dependent inhibition in carrageenan induced paw swelling. Moreover, the results of in vitro and in vivo pharmacokinetic parameters indicated that the synthesized pyrrole-hydroxybutenolide conjugates abide by the required criteria for the development of orally active drug and thus this scaffold can be used as pharmacologically active framework that should be considered for the development of potential antiplasmodial and anti-inflammatory agents.


Assuntos
Antimaláricos , Animais , Camundongos , Antimaláricos/farmacologia , Cloroquina/farmacologia , Plasmodium falciparum , Monócitos , Anti-Inflamatórios/farmacologia
4.
Exp Parasitol ; 246: 108475, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36707015

RESUMO

Malaria remains as a global life-threatening disorder due to the emergence of resistance against standard antimalarials. Consequently, there is a serious need to better understand the biology of the malaria parasite in order to determine appropriate targets for new interventions. Calcyclin binding protein (CacyBP) is a multi-functional and multi-ligand protein that is not well characterized in malaria disease. In this study, we have cloned CacyBP from rodent species Plasmodium yoelii nigeriensis and purified the recombinant protein to carry out its detailed molecular, biophysical and immunological characterization. Molecular characterization indicates that PyCacyBP is a ∼27 kDa protein in parasite lysate and exists in monomer and dimer forms. Bioinformatic analysis of CacyBP showed significant sequence and structural similarities between rodent and human malaria parasites. CacyBP is expressed in all blood stages of P. yoelii nigeriensis parasite. In silico studies proposed the immunogenic potential of CacyBP. The rPyCacyBP immunized mice exhibited elevated levels of IgG1, IgG2a, IgG2b and IgG3 in their serum. Notably, cellular immune response in splenocytes from immunized mice showed increased expression of pro-inflammatory cytokines such as IL-12, IFN-γ and TNF-α. This CacyBP exhibited pro-inflammatory immune response in rodent host. These finding revealed that CacyBP may have the potential to boost the host immunity for protection against malaria infection. The present study provides basis for further exploration of the biological function of CacyBP in malaria parasite.


Assuntos
Antimaláricos , Malária , Parasitos , Plasmodium yoelii , Humanos , Animais , Camundongos , Parasitos/metabolismo , Proteína A6 Ligante de Cálcio S100 , Malária/tratamento farmacológico , Antimaláricos/uso terapêutico , Imunidade Celular , Plasmodium yoelii/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/uso terapêutico
5.
Drug Res (Stuttg) ; 72(9): 500-508, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35952683

RESUMO

Malaria is a significant global problem which still persists despite the development of various effective antimalarial drugs. It is challenging to treat this disease due to the parasite's complex life cycle and high recrudensce of antimalarial drugs. A new self-micro emulsifying drug delivery system has been developed to improve the solubility of dihydroartemisinin and curcumin. The prepared formulation contained Dihydroartemesinin, curcumin, Groundnut Oil, Cremephor RH, and Tween 80. Self-micro emulsification time, zeta potential, droplet size, polydispersity index, transmission electron microscopy, drug release, and in-vivo studies were performed for characterization. The globule size was found to be 25.59±0.40 nm and the zeta potential was-5.75±0.18 mV. The globules prepared were spherical in shape. The in-vitro dissolution performance of formulation of dihydroartemisinin and curcumin self emulsifying drug delivery system showed significantly (p<0.05, Origin Pro 8.5) higher release as compared to the pure drugs. The results of the study suggested that the prepared self emulsifying drug delivery system combination of Dihydroartemesinin and curcumin has a better potential to cure parasitemia as compared to the individual drug.


Assuntos
Antimaláricos , Curcumina , Emulsões , Tamanho da Partícula , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Disponibilidade Biológica , Administração Oral
6.
ACS Omega ; 6(20): 12984-12994, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056449

RESUMO

A series of novel 4-aminoquinoline analogues bearing a methyl group at 4-aminoquinoline moiety were synthesized via a new and robust synthetic route comprising in situ tert-butoxycarbonyl (Boc) deprotection-methylation cascade resulting in the corresponding N-methylated secondary amine using Red-Al and an efficient microwave-assisted strategy for the fusion of N-methylated secondary amine with 4-chloroquinoline nucleus to access the series of novel 4-N-methylaminoquinoline analogues. The new series of compounds were evaluated for their antimalarial activity in in vitro and in vivo models. Among 21 tested compounds, 9a-i have shown a half-maximal inhibitory concentration (IC50) value less than 0.5 µM (i.e., <500 nM) against both chloroquine-sensitive strain 3D7 and chloroquine-resistant strain K1 of Plasmodium falciparum with acceptable cytotoxicity. Based on the in vitro antimalarial activity, selected compounds were screened for their in vivo antimalarial activity against Plasmodium yoelii nigeriensis (a multidrug-resistant) parasite in Swiss mice. Most of the compounds have shown significant inhibition on day 4 post infection at the oral dose of 100 mg/kg. Compound 9a has shown 100% parasite inhibition on day 4, and out of five treated mice, two were cured till the end of the experiment. The present study suggests that 4-methylamino substitution is well tolerated for the antiplasmodial activity with reduced toxicity and therefore will be highly useful for the discovery of a new antimalarial agent against drug-resistant malaria.

7.
Biomed Pharmacother ; 136: 111275, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33485067

RESUMO

In the era of drug repurposing, speedy discovery of new therapeutic options for the drug-resistant malaria is the best available tactic to reduce the financial load and time in the drug discovery process. Six anticancer drugs, three immunomodulators and four antibiotics were selected for the repositioning against experimental malaria owing to their mode of action and published literature. The efficacy of existing therapeutics was evaluated against chloroquine-resistant in vitro and in vivo strains of Plasmodium falciparum and P. yoelii, respectively. All the pre-existing FDA-approved drugs along with leptin were primarily screened against chloroquine-resistant (PfK1) and drug-sensitive (Pf3D7) strains of P. falciparum using SYBR green-based antiplasmodial assay. Cytotoxic profiling of these therapeutics was achieved on Vero and HepG2 cell lines, and human erythrocytes. Percent blood parasitemia and host survival was determined in chloroquine-resistant P. yoelii N67-infected Swiss mice using appropriate doses of these drugs/immunomodulators. Antimalarial screening together with cytotoxicity data revealed that anticancer drugs, idelalisib and 5-fluorouracil acquired superiority over their counterparts, regorafenib, and tamoxifen, respectively. ROS-inducer anticancer drugs, epirubicin and bleomycin were found toxic for the host. Immunomodulators (imiquimod, lenalidomide and leptin) were safest but less active in in vitro system, however, in P. yoelii-infected mice, they exhibited modest parasite suppression at their respective doses. Among antibiotics, moxifloxacin exhibited better antimalarial prospective than levofloxacin, roxithromycin and erythromycin. 5-Fluorouracil, imiquimod and moxifloxacin displayed 97.64, 81.18 and 91.77 % parasite inhibition in treated animals and attained superiority in their respective groups thus could be exploited further in combination with suitable antimalarials.


Assuntos
Antimaláricos/farmacologia , Reposicionamento de Medicamentos , Resistência a Medicamentos , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Animais , Antimaláricos/toxicidade , Chlorocebus aethiops , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Malária/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium yoelii/crescimento & desenvolvimento , Células Vero
8.
Eur J Med Chem ; 162: 448-454, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469040

RESUMO

In an attempt to develop new antimalarial drugs, we have synthesized a new class of N-alkylated 3-glycoconjugated-oxopropylidene oxindoles starting from substituted isatins and glucopyranosyl propanone via a well-known cross-aldol reaction followed by dehydration. The newly synthesized compounds were screened for their in vitro antiplasmodial activity, and among all the compounds 9g, 9f, 9b, 8d, 9d, 9c, and 9e displayed potent activity with the IC50 values in the range of 0.1-0.3 µM against Chloroquine (CQ) sensitive Pf3D7 strain, while compounds 9d, 9b, 9e, 8c, 8f, 9c, and 9a have shown promising activity having IC50 values in 0.1-0.4 µM range against CQ resistant PfK1 strain, which is even better than the standard drug chloroquine with IC50 value of 0.5 µM.


Assuntos
Antiprotozoários/síntese química , Isatina/química , Oxindóis/síntese química , Antimaláricos/síntese química , Antiprotozoários/farmacologia , Concentração Inibidora 50 , Relação Estrutura-Atividade
9.
Medchemcomm ; 9(7): 1232-1238, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30109012

RESUMO

A series of homologous C-nucleoside mimics have been synthesized via an efficient and facile synthetic protocol involving the conjugate addition of purine to sugar derived olefinic ester in good yields. The synthesized compounds were evaluated for their antiplasmodial activity in vitro against both the CQ-sensitive and resistant strains of P. falciparum. Interestingly, all the synthesized nucleoside analogs exhibited an IC50 of <5 µM, while compounds 22a, 23a, and 23b showed promising antiplasmodial activity with an IC50 of 1.61, 0.88, and 1.01 µM against the CQ-sensitive Pf3D7 strain and 1.14, 1.01, and 2.57 µM against the CQ-resistant PfK1 strain, respectively.

10.
Eur J Med Chem ; 155: 764-771, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29940466

RESUMO

A small library of 36 new glycohybrids of phenylhydrazono-indolinones was synthesized employing glycosylated 1,2,3-triazolyl-methyl-indoline-2,3-diones and different phenylhydrazines via acid catalyzed reaction. All the compounds were screened for their antiplasmodial activity in vitro. Compounds 6c, 7c, and 7b showed significant activity with the IC50 values 1.27, 1.64 and 1.96 µM, respectively against CQ sensitive Pf3D7 strain while compounds 7b and 6f showed good activity with IC50 1.61 and 1.93 µM, respectively against CQ resistant PfK1 strain.


Assuntos
Antimaláricos/farmacologia , Hidrazonas/farmacologia , Indóis/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Triazóis/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Glicosilação , Hidrazonas/química , Indóis/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA