Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(8): 556, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35781570

RESUMO

We report the isotopic composition of the surface water and groundwater of the Kosi River fan on the Himalayan Foreland, India. We have collected 65 water samples from surface water (Kosi River (n = 2), streams (n = 9), waterlogging (n = 29), and canal (n = 4)), and groundwater (n = 21) for δ18O and δ2H analysis during December 2019. We obtained groundwater level data measured at the observation wells from the Central Groundwater Board, India, for 1996 and 2017. The groundwater level varies from 1.0 to 8.1 m below ground level (bgl) and from 0.5 to 9.0 m bgl during 1996 and 2017, respectively. We have used water table fluctuation approach to estimate the recharge rate. The recharge rate in the Kosi Fan varies from 0.7 to 21.4 mm/year from 1996 to 2017. Further, we have used δ18O and δ2H values of water samples to identify the source and the interaction between surface water and groundwater. The δ18O value of groundwater shows a wide variation (from -9.3‰ to -5.6‰) compared to the surface water, i.e., streams (-7.8‰ to -6.4‰) and canals (-6.9‰ to -6.0‰), suggesting mixing in groundwater during recharge processes. Furthermore, we have used a two-component mixing model to assess the fraction contribution from streams and precipitation to groundwater. The estimated fraction contribution from stream water to groundwater ranges from 45 to 83%. We also suggest higher recharge is limited up to the depth of 6 m bgl. We suggest precipitation and surface water actively recharge groundwater. We conclude that marked spatial variation in the isotopic composition of groundwater is mainly due to the local recharge sources and interaction between surface water and groundwater.

2.
Sci Rep ; 10(1): 13452, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778800

RESUMO

The groundwater crisis in northwestern India is the result of over-exploitation of groundwater resources for irrigation. The Government of India has targeted a 20 percent improvement in irrigation groundwater use efficiency. In this perspective, and using a regional-scale calibrated and validated three-dimensional groundwater flow model, this article provides the first forecasts of water levels in the study area up to the year 2028, both with and without this improvement in use efficiency. Future water levels without any mitigation efforts are anticipated to decline by up to 2.8 m/year in some areas. A simulation with a 20 percent reduction in groundwater abstraction shows spatially varied aquifer responses. Tangible results are visible in a decade, and the water-level decline rates decrease by 36-67 percent in over-exploited areas. Although increasing irrigation use efficiency provides tangible benefits, an integrated approach to agricultural water management practice that incorporates use efficiency along with other measures like water-efficient cropping patterns and rainwater harvesting may yield better results in a shorter period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...