Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 83(1): 17-27, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25312958

RESUMO

The formation of an incapacitating biofilm on Caenorhabditis elegans by Yersinia pseudotuberculosis represents a tractable model for investigating the genetic basis for host-pathogen interplay during the biofilm-mediated infection of a living surface. Previously we established a role for quorum sensing (QS) and the master motility regulator, FlhDC, in biofilm formation by Y. pseudotuberculosis on C. elegans. To obtain further genome-wide insights, we used transcriptomic analysis to obtain comparative information on C. elegans in the presence and absence of biofilm and on wild-type Y. pseudotuberculosis and Y. pseudotuberculosis QS mutants. Infection of C. elegans with the wild-type Y. pseudotuberculosis resulted in the differential regulation of numerous genes, including a distinct subset of nematode C-lectin (clec) and fatty acid desaturase (fat) genes. Evaluation of the corresponding C. elegans clec-49 and fat-3 deletion mutants showed delayed biofilm formation and abolished biofilm formation, respectively. Transcriptomic analysis of Y. pseudotuberculosis revealed that genes located in both of the histidine utilization (hut) operons were upregulated in both QS and flhDC mutants. In addition, mutation of the regulatory gene hutC resulted in the loss of biofilm, increased expression of flhDC, and enhanced swimming motility. These data are consistent with the existence of a regulatory cascade in which the Hut pathway links QS and flhDC. This work also indicates that biofilm formation by Y. pseudotuberculosis on C. elegans is an interactive process during which the initial attachment/recognition of Yersinia to/by C. elegans is followed by bacterial growth and biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Interações Hospedeiro-Patógeno , Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/fisiologia , Animais , Perfilação da Expressão Gênica
2.
Microbiology (Reading) ; 160(Pt 12): 2710-2717, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25234474

RESUMO

Mg(2+) has been shown to be an important signal controlling gene regulation via the PhoPQ two-component regulatory system for a range of Gram-negative bacteria, including Yersinia pestis and Yersinia pseudotuberculosis. The magnesium ion transporter MgtB is part of the complex PhoPQ regulon, being upregulated in response to low Mg(2+). Despite the presence of other Mg(2+) transport systems in Yersinia, inactivation of mgtB had a significant effect on the ability of the bacteria to scavenge this crucial ion. Whereas inactivation of PhoPQ is reported to adversely affect intracellular survival, we show that Y. pestis and Y. pseudotuberculosis ΔmgtB mutants survived equally as well as the respective parent strain within macrophages, although they were more sensitive to killing in the Galleria model of infection. Surprisingly, despite MgtB being only one member of the Mg(2+) stimulon and PhoPQ controlling the expression levels of a range of genes including mgtB, the Yersinia ΔmgtB mutants were more highly attenuated than the equivalent Yersinia ΔphoP mutants in mouse models of infection. MgtB may be a suitable target for development of novel antimicrobials, and investigation of its role may help elucidate the contribution of this component of the PhoPQ regulon to pathogenesis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Fatores de Virulência/metabolismo , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/metabolismo , Yersinia pseudotuberculosis/crescimento & desenvolvimento , Yersinia pseudotuberculosis/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Modelos Animais de Doenças , Deleção de Genes , Lepidópteros/microbiologia , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Virulência , Fatores de Virulência/genética , Yersiniose/microbiologia , Yersiniose/patologia , Yersinia pestis/genética , Yersinia pseudotuberculosis/genética
3.
J Immunol ; 190(11): 5373-81, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23630351

RESUMO

Graves' disease results from thyroid-stimulating Abs (TSAbs) activating the thyrotropin receptor (TSHR). How TSAbs arise from early precursor B cells has not been established. Genetic and environmental factors may contribute to pathogenesis, including the bacterium Yersinia enterocolitica. We developed two pathogenic monoclonal TSAbs from a single experimental mouse undergoing Graves' disease, which shared the same H and L chain germline gene rearrangements and then diversified by numerous somatic hypermutations. To address the Ag specificity of the shared germline precursor of the monoclonal TSAbs, we prepared rFab germline, which showed negligible binding to TSHR, indicating importance of somatic hypermutation in acquiring TSAb activity. Using rFab chimeras, we demonstrate the dominant role of the H chain V region in TSHR recognition. The role of microbial Ags was tested with Y. enterocolitica proteins. The monoclonal TSAbs recognize 37-kDa envelope proteins, also recognized by rFab germline. MALDI-TOF identified the proteins as outer membrane porin (Omp) A and OmpC. Using recombinant OmpA, OmpC, and related OmpF, we demonstrate cross-reactivity of monoclonal TSAbs with the heterogeneous porins. Importantly, rFab germline binds recombinant OmpA, OmpC, and OmpF confirming reactivity with Y. enterocolitica. A human monoclonal TSAb, M22 with similar properties to murine TSAbs, also binds recombinant porins, showing cross-reactivity of a spontaneously arising pathogenic Ab with Y. enterocolitica. The data provide a mechanistic framework for molecular mimicry in Graves' disease, where early precursor B cells are expanded by Y. enterocolitica porins to undergo somatic hypermutation to acquire a cross-reactive pathogenic response to TSHR.


Assuntos
Mutação em Linhagem Germinativa , Doença de Graves/etiologia , Imunoglobulinas Estimuladoras da Glândula Tireoide/genética , Imunoglobulinas Estimuladoras da Glândula Tireoide/imunologia , Yersinia enterocolitica/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Expressão Gênica , Doença de Graves/genética , Doença de Graves/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Região Variável de Imunoglobulina/genética , Imunoglobulinas Estimuladoras da Glândula Tireoide/metabolismo , Ligação Proteica/imunologia , Subunidades Proteicas/imunologia , Subunidades Proteicas/metabolismo , Receptores da Tireotropina/química , Receptores da Tireotropina/imunologia , Receptores da Tireotropina/metabolismo , Proteínas Recombinantes
4.
PLoS Pathog ; 7(1): e1001250, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21253572

RESUMO

Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS.


Assuntos
Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Interações Hospedeiro-Patógeno/genética , Percepção de Quorum/genética , Yersinia pseudotuberculosis/genética , Acil-Butirolactonas/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caenorhabditis elegans/microbiologia , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Mutação
5.
Gene ; 346: 83-96, 2005 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-15716098

RESUMO

The flavin-containing monooxygenase (FMO) gene family is conserved and ancient with representatives present in almost all phyla so far examined. The genes encode FAD-, NADP- and O(2)-dependent enzymes that catalyse oxygenation of soft-nucleophilic heteroatom centres in a range of substrates. Although usually classified as xenobiotic-metabolising enzymes, examples of FMOs exist that have evolved to metabolise specific endogenous substrates as part of a discrete physiological process. The genome of Caenorhabditis elegans contains five predicted genes encoding putative homologs of mammalian FMOs, K08C7.2, K08C7.5, Y39A1A.19, F53F4.5 and H24K24.5, which we have named fmo and numbered fmo-1 to fmo-5, respectively. As a first step towards determining their functional role(s), we have experimentally characterised these C. elegans fmo genes including analysing reporter gene expression patterns and RNAi phenotypes. Two major gene expression patterns were observed, either intestinal or hypodermal, but no gross RNAi phenotypes were found possibly due to functional redundancy. The internal structures of fmo-2, fmo-3 and fmo-4 have been compared with orthologs identified in the related nematode C. briggsae. For each orthologous pair, a global comparison of the paired upstream intergenic regions was performed and a number of conserved noncoding sequences, which may represent potential cis-regulatory elements, identified. Phylogenetic analysis reveals that several of the fmo homologs are the result of gene duplication along the lineage leading to the nematodes.


Assuntos
Caenorhabditis elegans/genética , Expressão Gênica , Genoma , Oxigenases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Filogenia , Interferência de RNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...