Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Microbiol ; 56(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30257897

RESUMO

Bartonella henselae causes cat scratch disease and several other clinical entities. Infections with B. henselae are frequently occurring; however, the infection is only rarely diagnosed, mainly due to a lack of knowledge in the medical community. Microscopic immunofluorescence assays (IFA) are widely used for the serodiagnosis of B. henselae infections but are laborious and time-consuming, and interpretation is subjective. An easy and reliable method for the serological diagnosis of B. henselae infections is needed to overcome the shortcomings of the current IFA. Here, we report the development of an ELISA detecting human anti-B. henselae antibodies from serum samples. By separating the water-insoluble fraction of B. henselae Houston-1 via ion-exchange chromatography, 16 subfractions were generated and tested for immunoreactivity via line blotting. One particular fraction (fraction 24) was selected and spotted on ELISA plates using an industrial production platform. By use of well-characterized human sera from the strictly quality-controlled serum library of the German National Consiliary Laboratory for Bartonella infections, the sensitivity of this ELISA was 100% for PCR-proven infections and 76% for clinically suspected infections at a specificity of 93%. This ELISA is therefore a reliable high-throughput method allowing the serodiagnosis of B. henselae infections.


Assuntos
Anticorpos Antibacterianos/sangue , Infecções por Bartonella/diagnóstico , Bartonella henselae/imunologia , Ensaio de Imunoadsorção Enzimática , Testes Sorológicos/métodos , Infecções por Bartonella/sangue , Bartonella henselae/isolamento & purificação , Doença da Arranhadura de Gato/sangue , Doença da Arranhadura de Gato/diagnóstico , Imunofluorescência/normas , Humanos , Sensibilidade e Especificidade
2.
Mol Genet Metab ; 123(3): 364-374, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29396028

RESUMO

Congenital disorders of glycosylation (CDG) are genetic defects in the glycoconjugate biosynthesis. >100 types of CDG are known, most of them cause multi-organ diseases. Here we describe a boy whose leading symptoms comprise cutis laxa, pancreatic insufficiency and hepatosplenomegaly. Whole exome sequencing identified the novel hemizygous mutation c.542T>G (p.L181R) in the X-linked ATP6AP1, an accessory protein of the mammalian vacuolar H+-ATPase, which led to a general N-glycosylation deficiency. Studies of serum N-glycans revealed reduction of complex sialylated and appearance of truncated diantennary structures. Proliferation of the patient's fibroblasts was significantly reduced and doubling time prolonged. Additionally, there were alterations in the fibroblasts' amino acid levels and the acylcarnitine composition. Especially, short-chain species were reduced, whereas several medium- to long-chain acylcarnitines (C14-OH to C18) were elevated. Investigation of the main lipid classes revealed that total cholesterol was significantly enriched in the patient's fibroblasts at the expense of phophatidylcholine and phosphatidylethanolamine. Within the minor lipid species, hexosylceramide was reduced, while its immediate precursor ceramide was increased. Since catalase activity and ACOX3 expression in peroxisomes were reduced, we assume an ATP6AP1-dependent impact on the ß-oxidation of fatty acids. These results help to understand the complex clinical characteristics of this new patient.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Cútis Laxa/genética , Insuficiência Pancreática Exócrina/genética , Metaboloma/genética , ATPases Vacuolares Próton-Translocadoras/genética , Acil-CoA Oxidase/metabolismo , Catalase/metabolismo , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/metabolismo , Cútis Laxa/diagnóstico , Cútis Laxa/metabolismo , Insuficiência Pancreática Exócrina/diagnóstico , Insuficiência Pancreática Exócrina/metabolismo , Ácidos Graxos/metabolismo , Genes Ligados ao Cromossomo X/genética , Humanos , Lactente , Masculino , Metabolômica , Oxirredução , ATPases Vacuolares Próton-Translocadoras/deficiência , Sequenciamento do Exoma
3.
Cell Res ; 27(11): 1351-1364, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28925387

RESUMO

Ricin is one of the most feared bioweapons in the world due to its extreme toxicity and easy access. Since no antidote exists, it is of paramount importance to identify the pathways underlying ricin toxicity. Here, we demonstrate that the Golgi GDP-fucose transporter Slc35c1 and fucosyltransferase Fut9 are key regulators of ricin toxicity. Genetic and pharmacological inhibition of fucosylation renders diverse cell types resistant to ricin via deregulated intracellular trafficking. Importantly, cells from a patient with SLC35C1 deficiency are also resistant to ricin. Mechanistically, we confirm that reduced fucosylation leads to increased sialylation of Lewis X structures and thus masking of ricin-binding sites. Inactivation of the sialyltransferase responsible for modifications of Lewis X (St3Gal4) increases the sensitivity of cells to ricin, whereas its overexpression renders cells more resistant to the toxin. Thus, we have provided unprecedented insights into an evolutionary conserved modular sugar code that can be manipulated to control ricin toxicity.


Assuntos
Fucosiltransferases/genética , Proteínas de Membrana Transportadoras/genética , Ricina/toxicidade , Animais , Deleção de Genes , Complexo de Golgi/metabolismo , Humanos , Camundongos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/fisiologia , Mutação , Ricina/metabolismo , Sialiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...