Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10050, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344495

RESUMO

We report on the effects of visible light on the low temperature electronic properties of the spin-polarized two dimensional electron system (2DES) formed at the interfaces between LaAlO[Formula: see text], EuTiO[Formula: see text] and (001) SrTiO[Formula: see text]. A strong, persistent modulation of both longitudinal and transverse conductivity was obtained using light emitting diodes (LEDs) with emissions at different wavelengths in the visible spectrum range. In particular, Hall effect data show that visible light induces a non-volatile electron filling of bands with mainly 3d[Formula: see text] character, and at the same time an enhancement of the anomalous Hall effect associated to the magnetic properties of the system. Accordingly, a suppression of the weak-anti localization corrections to the magneto-conductance is found, which correlates with an enhancement of the spin-polarization and of the ferromagnetic character of 2DES. The results establish the LED-induced photo-doping as a viable route for the control of the ground state properties of artificial spin-polarized oxide 2DES.

2.
Nano Lett ; 19(8): 4911-4918, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31241962

RESUMO

Dipolar excitons offer a rich playground for both design of novel optoelectronic devices and fundamental many-body physics. Wide GaN/(AlGa)N quantum wells host a new and promising realization of dipolar excitons. We demonstrate the in-plane confinement and cooling of these excitons, when trapped in the electrostatic potential created by semitransparent electrodes of various shapes deposited on the sample surface. This result is a prerequisite for the electrical control of the exciton densities and fluxes, as well for studies of the complex phase diagram of these dipolar bosons at low temperature.

3.
Phys Chem Chem Phys ; 19(24): 15833-15841, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28585655

RESUMO

Silicon carbide (SiC) sublimation is the most promising option to achieve transfer-free graphene at the wafer-scale. We investigated the initial growth stages from the buffer layer to monolayer graphene on SiC(0001) as a function of annealing temperature at low argon pressure (10 mbar). A buffer layer, fully covering the SiC substrate, forms when the substrate is annealed at 1600 °C. Graphene formation starts from the step edges of the SiC substrate at higher temperature (1700 °C). The spatial homogeneity of the monolayer graphene was observed at 1750 °C, as characterized by Raman spectroscopy and magneto-transport. Raman spectroscopy mapping indicated an AG-graphene/AG-HOPG ratio of around 3.3%, which is very close to the experimental value reported for a graphene monolayer. Transport measurements from room temperature down to 1.7 K indicated slightly p-doped samples (p ≃ 1010 cm-2) and confirmed both continuity and thickness of the monolayer graphene film. Successive growth processes have confirmed the reproducibility and homogeneity of these monolayer films.

4.
Nanoscale Res Lett ; 6(1): 141, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21711670

RESUMO

Using high-temperature annealing conditions with a graphite cap covering the C-face of, both, on axis and 8° off-axis 4H-SiC samples, large and homogeneous single epitaxial graphene layers have been grown. Raman spectroscopy shows evidence of the almost free-standing character of these monolayer graphene sheets, which was confirmed by magneto-transport measurements. On the best samples, we find a moderate p-type doping, a high-carrier mobility and resolve the half-integer quantum Hall effect typical of high-quality graphene samples. A rough estimation of the density of states is given from temperature measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...