Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(4): 1130-1143, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36728919

RESUMO

The nonequilibrium steady state (NESS) of a quantum network is central to a host of physical and biological scenarios. Examples include natural processes such as vision and photosynthesis as well as technical devices such as photocells, both activated by incoherent light (e.g., sunlight) and leading to quantum transport. Assessing time scales of the relevant chemical processes in the steady state is thus of utmost interest and is our goal in this paper. Here, a completely general approach to defining components of a quantum network in the NESS and obtaining rates of processes between these components is provided. Quantum effects are explicitly included throughout, both in (a) defining network components via projection operators and (b) determining the role of coherences in rate processes. As examples, the methodology is applied to model cases, two versions of the V-level system, and to the spin-boson model, wherein the roles of the environment and of internal system properties in determining the rates are examined. In addition, the role of Markovian vs non-Markovian contributions is quantified, exposing conditions under which NESS rates can be obtained by perturbing the nonequilibrium steady state.

2.
J Chem Theory Comput ; 18(10): 5799-5809, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36166838

RESUMO

In this paper, we present a variational treatment of the linear dependence for a non-orthogonal time-dependent basis set in solving the Schrödinger equation. The method is based on (i) the definition of a linearly independent working space and (ii) a variational construction of the propagator over finite time steps. The second point allows the method to properly account for changes in the dimensionality of the working space along the time evolution. In particular, the time evolution is represented by a semi-unitary transformation. Tests are carried out on a quartic double-well potential with Gaussian basis functions whose centers evolve according to classical equations of motion. We show that the resulting dynamics converges to the exact one and is unitary by construction.

3.
J Chem Phys ; 156(20): 204121, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649883

RESUMO

Application of the time-dependent variational principle to a linear combination of frozen-width Gaussians describing the nuclear wavefunction provides a formalism where the total energy is conserved. The computational downside of this formalism is that trajectories of individual Gaussians are solutions of a coupled system of differential equations, limiting implementation to serial propagation algorithms. To allow for parallelization and acceleration of the computation, independent trajectories based on simplified equations of motion were suggested. Unfortunately, within practical realizations involving finite Gaussian bases, this simplification leads to breaking the energy conservation. We offer a solution for this problem by using Lagrange multipliers to ensure the energy and norm conservation regardless of basis function trajectories or basis completeness. We illustrate our approach within the multi-configurational Ehrenfest method considering a linear vibronic coupling model.

4.
Philos Trans A Math Phys Eng Sci ; 380(2223): 20200379, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35341311

RESUMO

The choice of the electronic representation in on-the-fly quantum dynamics is crucial. The adiabatic representation is appealing since adiabatic states are readily available from quantum chemistry packages. The nuclear wavepackets are then expanded in a basis of Gaussian functions, which follow trajectories to explore the potential energy surfaces and approximate the potential using a local expansion of the adiabatic quantities. Nevertheless, the adiabatic representation is plagued with severe limitations when conical intersections are involved: the diagonal Born-Oppenheimer corrections (DBOCs) are non-integrable, and the geometric phase effect on the nuclear wavepackets cannot be accounted for unless a model is available. To circumvent these difficulties, the moving crude adiabatic (MCA) representation was proposed and successfully tested in low energy dynamics where the wavepacket skirts the conical intersection. We assess the MCA representation in the case of non-adiabatic transitions through conical intersections. First, we show that using a Gaussian basis in the adiabatic representation indeed exhibits the aforementioned difficulties with a special emphasis on the possibility to regularize the DBOC terms. Then, we show that MCA is indeed able to properly model non-adiabatic transitions. Tests are done on linear vibronic coupling models for the bis(methylene) adamantyl cation and the butatriene cation. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.

5.
J Chem Phys ; 150(12): 124109, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30927888

RESUMO

We present a model for the lowest two potential energy surfaces (PESs) that describe the photoinduced ring-opening reaction of benzopyran taken as a model compound to study the photochromic ring-opening reaction of indolinobenzospiropyran and its evolution toward its open-chain analog. The PESs are expressed in terms of three effective rectilinear coordinates. One corresponds to the direction between the equilibrium geometry in the electronic ground state, referred to as the Franck-Condon geometry, and the minimum of conical intersection (CI), while the other two span the two-dimensional branching space at the CI. The model correctly reproduces the topography of the PESs. The ab initio calculations are performed with the extended multiconfiguration quasidegenerate perturbation theory at second order method. We demonstrate that accounting for electron dynamic correlation drastically changes the global energy landscape since some zwitterionic states become strongly stabilized. Quantum dynamics calculations using this PES model produce an absorption spectrum that matches the experimental one to a good accuracy.

6.
J Phys Chem A ; 122(29): 6031-6042, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29781620

RESUMO

We review techniques for simulating fully quantum nonadiabatic dynamics using the frozen-width moving Gaussian basis functions to represent the nuclear wave function. A choice of these basis functions is primarily motivated by the idea of the on-the-fly dynamics that will involve electronic structure calculations done locally in the vicinity of each Gaussian center and thus avoiding the "curse of dimensionality" appearing in large systems. For quantum dynamics involving multiple electronic states there are several aspects that need to be addressed. First, the choice of the electronic-state representation is one of most defining in terms of formulation of resulting equations of motion. We will discuss pros and cons of the standard adiabatic and diabatic representations as well as the relatively new moving crude adiabatic (MCA) representation. Second, if the number of electronic states can be fixed throughout the dynamics, the situation is different for the number of Gaussians needed for an accurate expansion of the total wave function. The latter increases its complexity along the course of the dynamics and a protocol extending the number of Gaussians is needed. We will consider two common approaches for the extension: (1) spawning and (2) cloning. Third, equations of motion for individual Gaussians can be chosen in different ways, implications for the energy conservation related to these ways will be discussed. Finally, to extend the success of moving basis approaches to quantum dynamics of open systems we will consider the Nonstochastic Open System Schrödinger Equation (NOSSE).

7.
J Chem Phys ; 148(11): 114102, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29566517

RESUMO

A new methodology of simulating nonadiabatic dynamics using frozen-width Gaussian wavepackets within the moving crude adiabatic representation with the on-the-fly evaluation of electronic structure is presented. The main feature of the new approach is the elimination of any global or local model representation of electronic potential energy surfaces; instead, the electron-nuclear interaction is treated explicitly using the Gaussian integration. As a result, the new scheme does not introduce any uncontrolled approximations. The employed variational principle ensures the energy conservation and leaves the number of electronic and nuclear basis functions as the only parameter determining the accuracy. To assess performance of the approach, a model with two electronic and two nuclear spacial degrees of freedom containing conical intersections between potential energy surfaces has been considered. Dynamical features associated with nonadiabatic transitions and nontrivial geometric (or Berry) phases were successfully reproduced within a limited basis expansion.

8.
J Chem Phys ; 147(6): 064106, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28810773

RESUMO

We investigate geometric phase (GP) effects in nonadiabatic transitions through a conical intersection (CI) in an N-dimensional linear vibronic coupling (ND-LVC) model. This model allows for the coordinate transformation encompassing all nonadiabatic effects within a two-dimensional (2D) subsystem, while the other N - 2 dimensions form a system of uncoupled harmonic oscillators identical for both electronic states and coupled bi-linearly with the subsystem coordinates. The 2D subsystem governs ultra-fast nonadiabatic dynamics through the CI and provides a convenient model for studying GP effects. Parameters of the original ND-LVC model define the Hamiltonian of the transformed 2D subsystem and thus influence GP effects directly. Our analysis reveals what values of ND-LVC parameters can introduce symmetry breaking in the 2D subsystem that diminishes GP effects.

9.
Acc Chem Res ; 50(7): 1785-1793, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28665584

RESUMO

Dynamical consideration that goes beyond the common Born-Oppenheimer approximation (BOA) becomes necessary when energy differences between electronic potential energy surfaces become small or vanish. One of the typical scenarios of the BOA breakdown in molecules beyond diatomics is a conical intersection (CI) of electronic potential energy surfaces. CIs provide an efficient mechanism for radiationless electronic transitions: acting as "funnels" for the nuclear wave function, they enable rapid conversion of the excessive electronic energy into the nuclear motion. In addition, CIs introduce nontrivial geometric phases (GPs) for both electronic and nuclear wave functions. These phases manifest themselves in change of the wave function signs if one considers an evolution of the system around the CI. This sign change is independent of the shape of the encircling contour and thus has a topological character. How these extra phases affect nonadiabatic dynamics is the main question that is addressed in this Account. We start by considering the simplest model providing the CI topology: two-dimensional two-state linear vibronic coupling model. Selecting this model instead of a real molecule has the advantage that various dynamical regimes can be easily modeled in the model by varying parameters, whereas any fixed molecule provides the system specific behavior that may not be very illustrative. After demonstrating when GP effects are important and how they modify the dynamics for two sets of initial conditions (starting from the ground and excited electronic states), we give examples of molecular systems where the described GP effects are crucial for adequate description of nonadiabatic dynamics. Interestingly, although the GP has a topological character, the extent to which accounting for GPs affect nuclear dynamics profoundly depends on topography of potential energy surfaces. Understanding an extent of changes introduced by the GP in chemical dynamics poses a problem of capturing GP effects by approximate methods of simulating nonadiabatic dynamics that can go beyond simple models. We assess the performance of both fully quantum (wave packet dynamics) and quantum-classical (surface-hopping, Ehrenfest, and quantum-classical Liouville equation) approaches in various cases where GP effects are important. It has been identified that the key to success in approximate methods is a method organization that prevents the quantum nuclear kinetic energy operator to act directly on adiabatic electronic wave functions.

10.
Chem Commun (Camb) ; 53(53): 7365-7368, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28603800

RESUMO

A topological or geometric phase (GP) blockade can be introduced in molecular electron transfer processes if a conical intersection (CI) occurs between two charge configurations. The origin of the blockade is in the destructive interference of two pathways around the CI that acquire opposite GPs. Electron transfer quantum dynamics including and excluding GP have been modelled for the bis(methylene) adamantyl carbocation. These calculations have shown unambiguously that the CI topology and the induced GP are responsible for the transport blockade.

11.
J Phys Chem Lett ; 8(8): 1793-1797, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28375623

RESUMO

We propose a systematic approach to the basis set extension for nonadiabatic dynamics of entangled combination of nuclear coherent states (CSs) evolving according to the time-dependent variational principle (TDVP). The TDVP provides a rigorous framework for fully quantum nonadiabatic dynamics of closed systems; however, the quality of results strongly depends on available basis functions. Starting with a single nuclear CS replicated vertically on all electronic states, our approach clones this function when replicas of the CS on different electronic states experience increasingly different forces. Created clones move away from each other (decohere), extending the basis set. To determine a moment for cloning, we introduce generalized forces based on derivatives that maximally contribute to a variation of the total quantum action and thus account for entanglement of all basis functions.

12.
J Phys Chem Lett ; 8(2): 452-456, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28036173

RESUMO

On-the-fly quantum nonadiabatic dynamics for large systems greatly benefits from the adiabatic representation readily available from electronic structure programs. However, conical intersections frequently occurring in this representation introduce nontrivial geometric or Berry phases which require a special treatment for adequate modeling of the nuclear dynamics. We analyze two approaches for nonadiabatic dynamics using the time-dependent variational principle and the adiabatic representation. The first approach employs adiabatic electronic functions with global parametric dependence on the nuclear coordinates. The second approach uses adiabatic electronic functions obtained only at the centers of moving localized nuclear basis functions (e.g., frozen-width Gaussians). Unless a gauge transformation is used to enforce single-valued boundary conditions, the first approach fails to capture the geometric phase. In contrast, the second approach accounts for the geometric phase naturally because of the absence of the global nuclear coordinate dependence in the electronic functions.

13.
J Chem Theory Comput ; 12(11): 5278-5283, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27723314

RESUMO

Electronic wave functions in the adiabatic representation acquire nontrivial geometric phases (GPs) when corresponding potential energy surfaces undergo conical intersection (CI). These GPs have profound effects on the nuclear quantum dynamics and cannot be eliminated in the adiabatic representation without changing the physics of the system. To define dynamical effects arising from the GP presence, the nuclear quantum dynamics of the CI containing system is compared with that of the system with artificially removed GP. We explore a new construction of the system with removed GP via a modification of the diabatic representation for the original CI containing system. Using an absolute value function of diabatic couplings, we remove the GP while preserving adiabatic potential energy surfaces and CI. We assess GP effects in dynamics of a two-dimensional linear vibronic coupling model both for ground and excited state dynamics. Results are compared with those obtained with a conventional removal of the GP by ignoring double-valued boundary conditions of the real electronic wave functions. Interestingly, GP effects appear similar in two approaches only for the low energy dynamics. In contrast with the conventional approach, the new approach does not have substantial GP effects in the ultrafast excited state dynamics.

14.
J Chem Phys ; 142(13): 134107, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25854228

RESUMO

Methods of quantum nuclear wave-function dynamics have become very efficient in simulating large isolated systems using the time-dependent variational principle (TDVP). However, a straightforward extension of the TDVP to the density matrix framework gives rise to methods that do not conserve the energy in the isolated system limit and the total system population for open systems where only energy exchange with environment is allowed. These problems arise when the system density is in a mixed state and is simulated using an incomplete basis. Thus, the basis set incompleteness, which is inevitable in practical calculations, creates artificial channels for energy and population dissipation. To overcome this unphysical behavior, we have introduced a constrained Lagrangian formulation of TDVP applied to a non-stochastic open system Schrödinger equation [L. Joubert-Doriol, I. G. Ryabinkin, and A. F. Izmaylov, J. Chem. Phys. 141, 234112 (2014)]. While our formulation can be applied to any variational ansatz for the system density matrix, derivation of working equations and numerical assessment is done within the variational multiconfiguration Gaussian approach for a two-dimensional linear vibronic coupling model system interacting with a harmonic bath.

15.
J Chem Phys ; 141(23): 234112, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25527924

RESUMO

We propose an extension of the Schrödinger equation for a quantum system interacting with environment. This extension describes dynamics of a collection of auxiliary wavefunctions organized as a matrix m, from which the system density matrix can be reconstructed as ρ̂=mm(†). We formulate a compatibility condition, which ensures that the reconstructed density satisfies a given quantum master equation for the system density. The resulting non-stochastic evolution equation preserves positive-definiteness of the system density and is applicable to both Markovian and non-Markovian system-bath treatments. Our formalism also resolves a long-standing problem of energy loss in the time-dependent variational principle applied to mixed states of closed systems.

16.
J Chem Phys ; 141(3): 034104, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25053298

RESUMO

We consider a fully quadratic vibronic model Hamiltonian for studying photoinduced electronic transitions through conical intersections. Using a second order perturbative approximation for diabatic couplings, we derive an analytical expression for the time evolution of electronic populations at a given temperature. This formalism extends upon a previously developed perturbative technique for a linear vibronic coupling Hamiltonian. The advantage of the quadratic model Hamiltonian is that it allows one to use separate quadratic representations for potential energy surfaces of different electronic states and a more flexible representation of interstate couplings. We explore features introduced by the quadratic Hamiltonian in a series of 2D models, and then apply our formalism to the 2,6-bis(methylene) adamantyl cation and its dimethyl derivative. The Hamiltonian parameters for the molecular systems have been obtained from electronic structure calculations followed by a diabatization procedure. The evolution of electronic populations in the molecular systems using the perturbative formalism shows a good agreement with that from variational quantum dynamics.


Assuntos
Elétrons , Modelos Moleculares , Eletricidade Estática , Pareamento de Bases , Benzeno/química , DNA/química , Dimerização , Halogênios/química , Teoria Quântica , Termodinâmica , Água/química
17.
J Chem Phys ; 140(21): 214116, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24907999

RESUMO

We investigate the role of the geometric phase (GP) in an internal conversion process when the system changes its electronic state by passing through a conical intersection (CI). Local analysis of a two-dimensional linear vibronic coupling (LVC) model Hamiltonian near the CI shows that the role of the GP is twofold. First, it compensates for a repulsion created by the so-called diagonal Born-Oppenheimer correction. Second, the GP enhances the non-adiabatic transition probability for a wave-packet part that experiences a central collision with the CI. To assess the significance of both GP contributions we propose two indicators that can be computed from parameters of electronic surfaces and initial conditions. To generalize our analysis to N-dimensional systems we introduce a reduction of a general N-dimensional LVC model to an effective 2D LVC model using a mode transformation that preserves short-time dynamics of the original N-dimensional model. Using examples of the bis(methylene) adamantyl and butatriene cations, and the pyrazine molecule we have demonstrated that their effective 2D models reproduce the short-time dynamics of the corresponding full dimensional models, and the introduced indicators are very reliable in assessing GP effects.

18.
J Chem Phys ; 140(4): 044301, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25669517

RESUMO

A new general model for describing intersecting multidimensional potential energy surfaces when motions of large amplitude are involved is presented. This model can be seen as an extension of the vibronic coupling models of Köppel et al. ["Multimode molecular dynamics beyond the Born-Oppenheimer approximation," Adv. Chem. Phys. 57, 59 (1984)]. In contrast to the original vibronic coupling models, here the number of diabatic states is larger than the number of adiabatic states and curvilinear coordinates are used in a systematic way. Following general considerations, the approach is applied to the fitting of the potential energy surfaces for the very complex nonadiabatic photodynamics of benzopyran. Preliminary results are presented at the complete active space self-consistent field level of theory and with up to 12 active degrees of freedom. Special emphasis is placed on the physical interpretation of the diabatic states and on the influence of the various degrees of freedom on the fit.

19.
J Chem Phys ; 139(20): 204107, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24289344

RESUMO

We present new techniques for an automatic computation of the kinetic energy operator in analytical form. These techniques are based on the use of the polyspherical approach and are extended to take into account Cartesian coordinates as well. An automatic procedure is developed where analytical expressions are obtained by symbolic calculations. This procedure is a full generalization of the one presented in Ndong et al., [J. Chem. Phys. 136, 034107 (2012)]. The correctness of the new implementation is analyzed by comparison with results obtained from the TNUM program. We give several illustrations that could be useful for users of the code. In particular, we discuss some cyclic compounds which are important in photochemistry. Among others, we show that choosing a well-adapted parameterization and decomposition into subsystems can allow one to avoid singularities in the kinetic energy operator. We also discuss a relation between polyspherical and Z-matrix coordinates: this comparison could be helpful for building an interface between the new code and a quantum chemistry package.

20.
J Chem Phys ; 139(23): 234103, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24359348

RESUMO

In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N - 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...