Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772724

RESUMO

Research has shown that pulse transit time (PTT), which is the time delay between the electrocardiogram (ECG) signal and the signal from a photoplethysmogram (PPG) sensor, can be used to estimate systolic blood pressure (SBP) and diastolic blood pressure (DBP) without the need for a cuff. However, the LED of the PPG sensor requires the precise adjustment of both light intensity and light absorption rates according to the contact status of the light-receiving element. This results in the need for regular calibration. In this study, we propose a cuffless blood pressure monitor that measures real-time blood pressure using a microphone instead of a PPG sensor. The blood pulse wave is measured in the radial artery of the wrist using a microphone that can directly measure the sound generated by a body rather than sending energy inside the body and receiving a returning signal. Our blood pressure monitor uses the PTT between the R-peak of the ECG signal and two feature points of the blood pulse wave in the radial artery of the wrist. ECG electrodes and circuits were fabricated, and a commercial microelectromechanical system (MEMS) microphone was used as the microphone to measure blood pulses. The peak points of the blood pulse from the microphone were clear, so the estimated SBP and DBP could be obtained from each ECG pulse in real time, and the resulting estimations were similar to those made by a commercial cuff blood pressure monitor. Since neither the ECG electrodes nor the microphone requires calibration over time, the real-time cuffless blood pressure monitor does not require calibration. Using the developed device, blood pressure was measured three times daily for five days, and the mean absolute error (MAE) and standard deviation (SD) of the SBP and DBP were found to be 2.72 ± 3.42 mmHg and 2.29 ± 3.53 mmHg, respectively. As a preliminary study for proof-of-concept, these results were obtained from one subject. The next step will be a pilot study on a large number of subjects.


Assuntos
Determinação da Pressão Arterial , Fotopletismografia , Humanos , Pressão Sanguínea/fisiologia , Projetos Piloto , Fotopletismografia/métodos , Análise de Onda de Pulso/métodos , Eletrocardiografia/métodos , Eletrodos
2.
Sensors (Basel) ; 22(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366085

RESUMO

This paper presents a silicon-dioxide-coated capacitive electrode system for an ambulatory electrocardiogram (ECG). The electrode was coated with a nano-leveled (287 nm) silicon dioxide layer which has a very high resistance of over 200 MΩ. Due to this high resistance, the electrode can be defined as only a capacitor without a resistive characteristic. This distinct capacitive characteristic of the electrode brings a simplified circuit analysis to achieve the development of a high-quality ambulatory ECG system. The 240 um thickness electrode was composed of a stainless-steel sheet layer for sensing, a polyimide electrical insulation layer, and a copper sheet connected with the ground to block any electrical noises generated from the back side of the structure. Six different diameter electrodes were prepared to optimize ECG signals in ambulatory environment, such as the amplitude of the QRS complex, amplitude of electromagnetic interference (EMI), and baseline wandering of the ECG signals. By combining the experimental results, optimal ambulatory ECG signals were obtained with electrodes that have a diameter from 1 to 3 cm. Moreover, we achieved high-quality ECG signals in a sweating simulation environment with 2 cm electrodes.


Assuntos
Eletrocardiografia , Dióxido de Silício , Eletrodos , Eletrocardiografia Ambulatorial , Eletricidade
3.
Lab Chip ; 20(23): 4474-4485, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33108430

RESUMO

The performance of micromixers, namely their mixing efficiency and throughput, is a critical component in increasing the overall efficiency of microfluidic systems (e.g., lab-on-a-chip and µ-TAS). Most previously reported high-performance micromixers use active elements with some external power to induce turbulence, or contain long and complex fluidic channels with obstacles to increase diffusion. In this paper, we introduce a new type of 3D impeller micromixer built within a single fused silica substrate. The proposed device is composed of microchannels with three inlets and a tank, with a mixing impeller passively rotated by axial flow. The passive micromixer is directly fabricated inside a glass plate using a selective laser-induced etching technique. The mixing tank, with its rotating shaft and 3D pitched blade impeller, exists within a micro-cavity with a volume of only 0.28 mm3. A mixing efficiency of 99% is achieved in mixing experiments involving three dye colours over flow rates ranging from 1.5-30 mL min-1, with the same flow rates also applied to a sodium hydroxide-based bromothymol blue indicator and a hydrochloric acid chemical solution. To verify the reliable performance of the proposed device, we compare the mixing index with a general self-circulation-type chamber mixer to demonstrate the improved mixing efficiency achieved by rotating the impeller. No cracking or breakage of the device is observed under high inner pressures or when the maximum flow rate is applied to the mixer. The proposed microfluidic system based on a compact built-in 3D micromixer with an impeller opens the door to robust, highly efficient, and high-throughput glass-based platforms for micro-centrifuges, cell sorters, micro-turbines, and micro-pumps.

4.
J Nanosci Nanotechnol ; 20(11): 6788-6791, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32604514

RESUMO

In this study, the optical and electrical properties of a transparent conductive oxide (TCO) film synthesized via the radio frequency (RF) magnetron co-sputtering of Al-doped ZnO (AZO) and ZnO targets on a glass substrate were investigated. In the visible region, the resistivity, transmittance, and carrier concentration of the TCO film are influenced by the ratio of Al doping. The samples were prepared using two targets with the same deposition condition, except several different power levels on an AZO target to obtain different Al compositions in the film. The power range was 100-160 W in 20 W steps on the AZO target with a constant 50 W power level on the ZnO target. The electrical and optical characteristics of the film were measured using several apparatuses. The cross-section of the films was measured with via field emission scanning electron microscopy (FESEM) to determine the thickness of the film. The electrical and optical properties of the AZO films were measured via Hall measurement and UV-visible spectroscopy. The structural characteristics of the AZO films were confirmed by Raman spectroscopy.

5.
Sensors (Basel) ; 19(8)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991708

RESUMO

We propose a new packaging process for an implantable blood pressure sensor using ultrafast laser micro-welding. The sensor is a membrane type, passive device that uses the change in the capacitance caused by the membrane deformation due to applied pressure. Components of the sensor such as inductors and capacitors were fabricated on two glass (quartz) wafers and the two wafers were bonded into a single package. Conventional bonding methods such as adhesive bonding, thermal bonding, and anodic bonding require considerable effort and cost. Therefore CO2 laser cutting was used due to its fast and easy operation providing melting and bonding of the interface at the same time. However, a severe heat process leading to a large temperature gradient by rapid heating and quenching at the interface causes microcracks in brittle glass and results in low durability and production yield. In this paper, we introduce an ultrafast laser process for glass bonding because it can optimize the heat accumulation inside the glass by a short pulse width within a few picoseconds and a high pulse repetition rate. As a result, the ultrafast laser welding provides microscale bonding for glass pressure sensor packaging. The packaging process was performed with a minimized welding seam width of 100 µm with a minute. The minimized welding seam allows a drastic reduction of the sensor size, which is a significant benefit for implantable sensors. The fabricated pressure sensor was operated with resonance frequencies corresponding to applied pressures and there was no air leakage through the welded interface. In addition, in vitro cytotoxicity tests with the sensor showed that there was no elution of inner components and the ultrafast laser packaged sensor is non-toxic. The ultrafast laser welding provides a fast and robust glass chip packaging, which has advantages in hermeticity, bio-compatibility, and cost-effectiveness in the manufacturing of compact implantable sensors.


Assuntos
Técnicas Biossensoriais/instrumentação , Determinação da Pressão Arterial/instrumentação , Pressão Sanguínea/fisiologia , Próteses e Implantes , Humanos , Lasers , Luz , Sistemas Microeletromecânicos/métodos , Embalagem de Produtos , Cimento de Óxido de Zinco e Eugenol/química
6.
Micromachines (Basel) ; 9(12)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513880

RESUMO

We present a rapid and highly reliable glass (fused silica) microfluidic device fabrication process using various laser processes, including maskless microchannel formation and packaging. Femtosecond laser assisted selective etching was adopted to pattern microfluidic channels on a glass substrate and direct welding was applied for local melting of the glass interface in the vicinity of the microchannels. To pattern channels, a pulse energy of 10 µJ was used with a scanning speed of 100 mm/s at a pulse repetition rate of 500 kHz. After 20⁻30 min of etching in hydrofluoric acid (HF), the glass was welded with a pulse energy of 2.7 µJ and a speed of 20 mm/s. The developed process was as simple as drawing, but powerful enough to reduce the entire production time to an hour. To investigate the welding strength of the fabricated glass device, we increased the hydraulic pressure inside the microchannel of the glass device integrated into a custom-built pressure measurement system and monitored the internal pressure. The glass device showed extremely reliable bonding by enduring internal pressure up to at least 1.4 MPa without any leakage or breakage. The measured pressure is 3.5-fold higher than the maximum internal pressure of the conventional polydimethylsiloxane (PDMS)⁻glass or PDMS⁻PDMS bonding. The demonstrated laser process can be applied to produce a new class of glass devices with reliability in a high pressure environment, which cannot be achieved by PDMS devices or ultraviolet (UV) glued glass devices.

7.
J Neurogastroenterol Motil ; 23(4): 606-615, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28554984

RESUMO

BACKGROUND/AIMS: Bile acid is an important luminal factor that affects gastrointestinal motility and secretion. We investigated the effect of bile acid on secretion in the proximal and distal rat colon and coordination of bowel movements in the guinea pig colon. METHODS: The short-circuit current from the mucosal strip of the proximal and distal rat colon was compared under control conditions after induction of secretion with deoxycholic acid (DCA) as well as after inhibition of secretion with indomethacin, 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid (an intracellular calcium chelator; BAPTA), and tetrodotoxin (TTX) using an Ussing chamber. Colonic pressure patterns were also evaluated in the extracted guinea pig colon during resting, DCA stimulation, and inhibition by TTX using a newly developed pressure-sensing artificial stool. RESULTS: The secretory response in the distal colon was proportionate to the concentration of DCA. Also, indomethacin, BAPTA, and TTX inhibited chloride secretion in response to DCA significantly (P < 0.05). However, these changes were not detected in the proximal colon. When we evaluated motility, we found that DCA induced an increase in luminal pressure at the proximal, middle, and distal sensors of an artificial stool simultaneously during the non-peristaltic period (P < 0.05). In contrast, during peristalsis, DCA induced an increase in luminal pressure at the proximal sensor and a decrease in pressure at the middle and distal sensors of the artificial stool (P < 0.05). CONCLUSIONS: DCA induced a clear segmental difference in electrogenic secretion. Also, DCA induced a more powerful peristaltic contraction only during the peristaltic period.

8.
J Nanosci Nanotechnol ; 16(5): 5291-4, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483917

RESUMO

In this study, the effects of post-plasma treatment on synthesized carbon nanowalls (CNWs) grown with a microwave were investigated. CNWs were synthesized by microwave plasma enhanced chemical vapor deposition (PECVD), employing a mixture of CH4 and H2 gases. The plasma treatment was done in different plasma environments (O2 and H2) but under the same condition of synthesized CNWs. Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and fourier transform infrared spectroscopy (FT-IR) were used to analyze the effects of the post-plasma treatment on the synthesized CNWs. After the H2 post-plasma treatment, no significant changes in the appearance and characteristics of the CNWs were observed. After the O2 post-plasma treatment, on the other hand, the CNWs were etched at a rate of 18.05 nm/sec. The Raman analysis confirmed, however, that the structural changes in the CNWs caused by the O2 post-plasma treatment were insignificant.

9.
Int Neurourol J ; 19(3): 133-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26620894

RESUMO

The loss of urinary bladder control/sensation, also known as urinary incontinence (UI), is a common clinical problem in autistic children, diabetics, and the elderly. UI not only causes discomfort for patients but may also lead to kidney failure, infections, and even death. The increase of bladder urine volume/pressure above normal ranges without sensation of UI patients necessitates the need for bladder sensors. Currently, a catheter-based sensor is introduced directly through the urethra into the bladder to measure pressure variations. Unfortunately, this method is inaccurate because measurement is affected by disturbances in catheter lines as well as delays in response time owing to the inertia of urine inside the bladder. Moreover, this technique can cause infection during prolonged use; hence, it is only suitable for short-term measurement. Development of discrete wireless implantable sensors to measure bladder volume/pressure would allow for long-term monitoring within the bladder, while maintaining the patient's quality of life. With the recent advances in microfabrication, the size of implantable bladder sensors has been significantly reduced. However, microfabricated sensors face hostility from the bladder environment and require surgical intervention for implantation inside the bladder. Here, we explore the various types of implantable bladder sensors and current efforts to solve issues like hermeticity, biocompatibility, drift, telemetry, power, and compatibility issues with popular imaging tools such as computed tomography and magnetic resonance imaging. We also discuss some possible improvements/emerging trends in the design of an implantable bladder sensor.

10.
Int Neurourol J ; 17(3): 98-106, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24143287

RESUMO

From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices. The inner body is a special space filled with electrical, chemical, mechanical, and marine-salted reactions. Therefore, electrical connectivity and communication, corrosion, robustness, and hermeticity are key factors to be considered during the development stage. The main participants in the development stage are the user, the medical staff, and the engineer or technician. Thus, there are three different viewpoints in the development of implantable devices. In this review paper, considerations in the development of implantable medical devices will be presented from the viewpoint of an engineering mind.

11.
Nanoscale Res Lett ; 7: 55, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22221542

RESUMO

This study introduces optical properties of a columnar structured zinc oxide [ZnO] antireflection coating for solar cells. We obtained ZnO films of columnar structure on glass substrates using a specially designed radio frequency magnetron sputtering system with different growth angles. Field-emission scanning electron microscopy was utilized to check the growth angles of the ZnO films which were controlled at 0°, 15°, and 30°. The film thickness was fixed at 100 nm to get a constant experiment condition. Grain sizes of the ZnO films were measured by X-ray diffraction. A UV-visible spectrometer was used to measure the transmittance and reflectance of the ZnO film columnar structures as a function of the growth angles.

12.
Nanoscale Res Lett ; 7(1): 22, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22221730

RESUMO

In this paper, we describe a method of amorphous silicon carbide film formation for a solar cell passivation layer. The film was deposited on p-type silicon (100) and glass substrates by an RF magnetron co-sputtering system using a Si target and a C target at a room-temperature condition. Several different SiC [Si1-xCx] film compositions were achieved by controlling the Si target power with a fixed C target power at 150 W. Then, structural, optical, and electrical properties of the Si1-xCx films were studied. The structural properties were investigated by transmission electron microscopy and secondary ion mass spectrometry. The optical properties were achieved by UV-visible spectroscopy and ellipsometry. The performance of Si1-xCx passivation was explored by carrier lifetime measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...