Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 178: 137-146, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447810

RESUMO

Endoscopic biliary stent insertion has been widely used for the treatment of benign biliary stricture (BBS). Thus, the development of stent materials in the perspectives of structure, mechanical properties, and biocompatibility has been also studied. However, conventional metal and plastic stents have several disadvantages, such as repeated procedures to remove or exchange them, dislodgment, restenosis, biocompatibility, and poor mechanical properties. Sustainable effectiveness, attenuation and prevention of fibrosis, and biocompatibility are key factors for the clinical application of stents to BBS treatment. In addition, loading drugs could show synergistic effects with stents' own performance. We developed a dexamethasone-eluting biodegradable stent (DBS) consisting of a sheath/core structure with outstanding mechanical properties and sustained release of dexamethasone, which maintained its functions in a BBS duct over 12 weeks in a swine model. The insertion of our DBS not only expanded BBS areas but also healed secondary ulcers as a result of the attenuation of fibrosis. After 16 weeks from the insertion, BBS areas were totally improved, and the DBS was degraded and thoroughly disappeared without re-intervention for stent removal. Our DBS would be an effective clinical tool for non-vascular diseases. STATEMENT OF SIGNIFICANCE: This study describes the insertion of a drug-eluting biodegradable stent (DBS) into the bile duct. The sheath/core structure of DBS confers substantial durability and a sustained drug release profile. Drug released from the DBS exhibited anti-fibrotic effects without inflammatory responses in both in vitro and in vivo experiments. The DBS maintained its function over 12 weeks after insertion into the common bile duct, expanding benign biliary stricture (BBS) and reducing inflammation to heal secondary ulcers in a swine BBS model. After 16 weeks from the DBS insertion, the DBS thoroughly disappeared without re-intervention for stent removal, resulting in totally improved BBS areas. Our findings not only spotlight the understanding of the sheath/core structure of the biodegradable stent, but also pave the way for the further application for non-vascular diseases.


Assuntos
Colestase , Úlcera , Animais , Suínos , Constrição Patológica , Stents , Colestase/terapia , Fibrose , Dexametasona/farmacologia
3.
Drug Test Anal ; 15(11-12): 1454-1467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37515313

RESUMO

Thymosin ß4 (Tß4) was reported to exert various beneficial bioactivities such as tissue repair, anti-inflammation, and reduced scar formation, and it is listed on the prohibited substances in sports by the World Anti-Doping Agency. However, no metabolism studies of Tß4 were reported yet. Previously, our lab reported in in vitro experiment that a total of 13 metabolites were found by using multiple enzymes, and six metabolites (Ac-Tß31-43 , Ac-Tß17-43 , Ac-Tß1-11 , Ac-Tß1-14 , Ac-Tß1-15 , and Ac-Tß1-17 ) were confirmed by comparing with the synthetic standards. This study was aimed at identifying new metabolites of Tß4 leucine aminopeptidase (LAP), human kidney microsomes (HKM), cultured huvec cells, and rats after administration of Tß4 protein to develop biomarkers for detecting doping drugs in sports. A method for detecting and quantifying Ac-Tß1-14 was developed and validated using Q-Exactive orbitrap mass spectrometry. The limit of detection (LOD) and limit of quantification (LOQ) of the Ac-Tß1-14 were 0.19 and 0.58 ng/mL, respectively, and showed a good linearity (r2 = 0.9998). As a result, among the six metabolites above, Ac-Tß1-14 , as a common metabolite, was found in LAP, HKM, huvec cells exposed to Tß4, and the urine of rats intraperitoneally treated with 20-mg/kg Tß4. And the metabolite Ac-Tß1-14 was quantitatively determined by 48 h in rats, with the highest concentration occurring between 0 and 6 h. Ac-Tß1-14 was not detected in non-treated control groups, including human blank urine. These results suggest that Ac-Tß1-14 in urine is a potential biomarker for screening the parent Tß4 in doping tests.


Assuntos
Líquidos Corporais , Dopagem Esportivo , Timosina , Ratos , Humanos , Animais , Rim , Timosina/metabolismo , Timosina/uso terapêutico , Líquidos Corporais/metabolismo
4.
Biomater Res ; 27(1): 58, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291675

RESUMO

The arterial occlusive disease is one of the leading causes of cardiovascular diseases, often requiring revascularization. Lack of suitable small-diameter vascular grafts (SDVGs), infection, thrombosis, and intimal hyperplasia associated with synthetic vascular grafts lead to a low success rate of SDVGs (< 6 mm) transplantation in the clinical treatment of cardiovascular diseases. The development of fabrication technology along with vascular tissue engineering and regenerative medicine technology allows biological tissue-engineered vascular grafts to become living grafts, which can integrate, remodel, and repair the host vessels as well as respond to the surrounding mechanical and biochemical stimuli. Hence, they potentially alleviate the shortage of existing vascular grafts. This paper evaluates the current advanced fabrication technologies for SDVGs, including electrospinning, molding, 3D printing, decellularization, and so on. Various characteristics of synthetic polymers and surface modification methods are also introduced. In addition, it also provides interdisciplinary insights into the future of small-diameter prostheses and discusses vital factors and perspectives for developing such prostheses in clinical applications. We propose that the performance of SDVGs can be improved by integrating various technologies in the near future.

5.
Biomater Res ; 27(1): 51, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208764

RESUMO

BACKGROUND: Recently, various studies have revealed that 3D cell spheroids have several advantages over 2D cells in stem cell culture. However, conventional 3D spheroid culture methods have some disadvantages and limitations such as time required for spheroid formation and complexity of the experimental process. Here, we used acoustic levitation as cell culture platform to overcome the limitation of conventional 3D culture methods. METHODS: In our anti-gravity bioreactor, continuous standing sonic waves created pressure field for 3D culture of human mesenchymal stem cells (hMSCs). hMSCs were trapped and aggerated in pressure field and consequently formed spheroids. The structure, viability, gene and protein expression of spheroids formed in the anti-gravity bioreactor were analyzed by electron microscope, immunostaining, polymerase chain reaction, and western blot. We injected hMSC spheroids fabricated by anti-gravity bioreactor into the mouse hindlimb ischemia model. Limb salvage was quantified to evaluate therapeutic efficacy of hMSC spheroids. RESULTS: The acoustic levitation in anti-gravity bioreactor made spheroids faster and more compact compared to the conventional hanging drop method, which resulted in the upregulation of angiogenic paracrine factors of hMSCs, such as vascular endothelial growth factor and angiopoietin 2. Injected hMSCs spheroids cultured in the anti-gravity bioreactor exhibited improved therapeutic efficacy, including the degree of limb salvage, capillary formation, and attenuation of fibrosis and inflammation, for mouse hindlimb ischemia model compared to spheroids formed by the conventional hanging drop method. CONCLUSION: Our stem cell culture system using acoustic levitation will be proposed as a new platform for the future 3D cell culture system.

6.
Tissue Eng Regen Med ; 20(2): 177-198, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36689072

RESUMO

Recently, various attempts have been made to apply diverse types of nanoparticles in biotechnology. Silica nanoparticles (SNPs) have been highlighted and studied for their selective accumulation in diseased parts, strong physical and chemical stability, and low cytotoxicity. SNPs, in particular, are very suitable for use in drug delivery and bioimaging, and have been sought as a treatment for ischemic diseases. In addition, mesoporous silica nanoparticles have been confirmed to efficiently deliver various types of drugs owing to their porous structure. Moreover, there have been innovative attempts to treat ischemic diseases using SNPs, which utilize the effects of Si ions on cells to improve cell viability, migration enhancement, and phenotype modulation. Recently, external stimulus-responsive treatments that control the movement of magnetic SNPs using external magnetic fields have been studied. This review addresses several original attempts to treat ischemic diseases using SNPs, including particle synthesis methods, and presents perspectives on future research directions.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Dióxido de Silício/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Porosidade
7.
Tissue Eng Regen Med ; 19(1): 35-47, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34686991

RESUMO

BACKGROUND: To prevent unsolved problems of medical devices, we hypothesized that combinatorial effects of zwitterionic functional group and anti-bacterial metal ions can reduce effectively the thrombosis and bacterial infection of polymeric biomaterials. In this research, we designed a novel series of zwitterionic polyurethane (zPU) additives to impart anti-thrombotic properties to a polyvinyl chloride (PVC) matrix. METHODS: We have synthesized zPUs by combination of various components and zPUs complexed with metal ions. Zwitterion group was prepared by reaction with 1,3-propane sultone and Nmethyldiethanolamine and metal ions were incorporated into sulfobetaine chains via molecular complexation. These zPU additives were characterized using FT-IR, 1H-NMR, elemental analysis, and thermal analysis. The PVC film blended with zPU additives were prepared by utilizing a solvent casting and hot melting process. RESULTS: Water contact angle demonstrated that the introduction of zwitterion group has improved hydrophilicity of polyurethanes dramatically. Protein adsorption test resulted in improved anti-fouling effects dependent on additive concentration and decreases in their effects by metal complexation. Platelet adhesion test revealed anti-fouling effects by additive blending but not significant as compared to protein resistance results. CONCLUSION: With further studies, the synthesized zPUs and zPUs complexed with metal ions are expected to be used as good biomaterials in biomedical fields. Based on our results, we can carefully estimate that the enhanced anti-fouling effect contributed to reduced platelet adhesion. Schematic explanation of the effect of zwitterionic polyurethane additives for blood-compatible and anti-bacterial bulk modification.


Assuntos
Adesividade Plaquetária , Poliuretanos , Adsorção , Íons , Poliuretanos/química , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Tissue Eng Regen Med ; 19(2): 289-299, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34561850

RESUMO

BACKGROUND: Owing to the tumor-targeted migration capacity of human mesenchymal stem cells (hMSCs), they have been combined with nanoparticles for photothermal therapy. However, the low viability of hMSCs following transplantation remains a problem. Here, we developed iron (Fe) ion-releasing gold (Au) nanoparticles (IIAuNPs) for advanced tumor-targeted photothermal therapy using hMSCs. METHODS: IIAuNPs were designed to undergo degradation under low pH conditions, such as the endosomal microenvironment, for Fe ion release in hMSCs. After evaluating the properties of IIAuNP, the IIAuNP concentration for treating hMSCs was optimized in terms of cytotoxicity. In vitro cell migration and antiapoptotic factor secretion were observed in hMSCs. Additionally, IIAuNPs-treated hMSCs were intravenously injected into tumor-bearing mice, and enhanced tumor targeting based on improved cell viability and cell migration was evaluated. Three days after the injection, the mice were irradiated with 660 nm laser to confirm the enhanced photothermal effect. RESULTS: In vitro studies revealed that treating hMSCs with an optimum concentration of IIAuNPs enhanced cell migration and anti-apoptotic gene expression through intracellular Fe ion delivery. The viability of hMSCs under hypoxic cell culture conditions that mimic the in vivo microenvironment was also improved when hMSCs were treated with IIAuNPs, compared to hMSCs without IIAuNPs treatment. IIAuNPs-treated hMSCs showed significantly enhanced tumor-targeting efficiency and subsequent photothermal effect compared to hMSCs without IIAuNP treatment. CONCLUSION: Our results suggest that our metal-ion-releasing photothermal nanoparticles may provide a promising platform for future photothermal therapies and related applications.


Assuntos
Nanopartículas Metálicas , Neoplasias , Animais , Sobrevivência Celular , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Neoplasias/terapia , Terapia Fototérmica , Microambiente Tumoral
9.
J Nanobiotechnology ; 19(1): 352, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717632

RESUMO

BACKGROUND: Human adipose-derived stem cells (hADSCs) have been used in various fields of tissue engineering because of their promising therapeutic efficacy. However, the stemness of hADSCs cannot be maintained for long durations, and their therapeutic cellular functions, such as paracrine factor secretion decrease during long-term cell culture. To facilitate the use of long-term-cultured hADSCs (L-ADSCs), we designed a novel therapeutic anti-senescence ion-delivering nanocarrier (AIN) that is capable of recovering the therapeutic properties of L-ADSCs. In the present study, we introduced a low-pH-responsive ion nanocarrier capable of delivering transition metal ions that can enhance angiogenic paracrine factor secretion from L-ADSCs. The AINs were delivered to L-ADSCs in an intracellular manner through endocytosis. RESULTS: Low pH conditions within the endosomes induced the release of transition metal ions (Fe) into the L-ADSCs that in turn caused a mild elevation in the levels of reactive oxygen species (ROS). This mild elevation in ROS levels induced a downregulation of senescence-related gene expression and an upregulation of stemness-related gene expression. The angiogenic paracrine factor secretion from L-ADSCs was significantly enhanced, and this was evidenced by the observed therapeutic efficacy in response to treatment of a wound-closing mouse model with conditioned medium obtained from AIN-treated L-ADSCs that was similar to that observed in response to treatment with short-term-cultured adipose-derived stem cells. CONCLUSIONS: This study suggests a novel method and strategy for cell-based tissue regeneration that can overcome the limitations of the low stemness and therapeutic efficacy of stem cells that occurs during long-term cell culture.


Assuntos
Tecido Adiposo , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Íons/química , Células-Tronco , Indutores da Angiogênese/farmacologia , Animais , Vasos Sanguíneos/patologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo
10.
Carbohydr Polym ; 260: 117808, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712154

RESUMO

In the present study, a novel synthetic tissue adhesive material capable of sealing wounds without the use of any crosslinking agent was developed by conjugating thermosensitive hexanoyl glycol chitosan (HGC) with gallic acid (GA). The degree of N-gallylation was manipulated to prepare GA-HGCs with different GA contents. GA-HGCs demonstrated thermosensitive sol-gel transition behavior and formed irreversible hydrogels upon natural oxidation of the pyrogallol moieties in GA, possibly leading to GA-HGC crosslinks through intra/intermolecular hydrogen bonding and chemical bonds. The GA-HGC hydrogels exhibited self-healing properties, high compressive strength, strong tissue adhesive strength and biodegradability that were adjustable according to the GA content. GA-HGCs also presented excellent biocompatibility and wound healing effects. The results of in vivo wound healing efficacy studies on GA-HGC hydrogels indicated that they significantly promote wound closure and tissue regeneration by upregulating growth factors and recruiting fibroblasts compared to the untreated control group.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Ácido Gálico/química , Animais , Materiais Biocompatíveis/farmacologia , Força Compressiva , Hidrogéis/química , Hidrogéis/farmacologia , Reologia , Suínos , Adesivos Teciduais/química , Cicatrização/efeitos dos fármacos
11.
J Tissue Eng ; 12: 20417314211067004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987748

RESUMO

Comprehensive research has led to significant preclinical outcomes in modified human adipose-derived mesenchymal stem cells (hADSCs). Photobiomodulation (PBM), a technique to enhance the cellular capacity of stem cells, has attracted considerable attention owing to its effectiveness and safety. Here, we suggest a red organic light-emitting diode (OLED)-based PBM strategy to augment the therapeutic efficacy of hADSCs. In vitro assessments revealed that hADSCs basked in red OLED light exhibited enhanced angiogenesis, cell adhesion, and migration compared to naïve hADSCs. We demonstrated that the enhancement of cellular capacity was due to an increased level of intracellular reactive oxygen species. Furthermore, accelerated healing and regulated inflammatory response was observed in mice transplanted with red light-basked hADSCs. Overall, our findings suggest that OLED-based PBM may be an easily accessible and attractive approach for tissue regeneration that can be applied to various clinical stem cell therapies.

12.
ACS Appl Bio Mater ; 4(8): 6381-6393, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006907

RESUMO

Engineering an endothelium-mimetic surface has been one of long-lasting topics to develop ideal cardiovascular devices. The aim of the study was to investigate the potential use of a model of lipid bilayers that not only come from membranes extracted from endothelial cells (ECs) but also embedded with a type of organoselenium lipid enabling it to catalyze the generation of nitric oxide (NO). Herein, the titanium-cloaking in lipid bilayers extracted from ECs was prepared to propose a promising idea for the development of endovascular implants. For this purpose, we synthesized and characterized a lipidic molecule containing selenium and verified enough catalytic activity for the NO generation in the presence of S-nitrosothiols (RSNO) as endogenous NO precursors. We demonstrated the fabrication process of tethered lipid bilayers, from membrane extraction to vesicle fusion, and validated the successful formation of the layer and the catalyst insertion. The resulting bilayer presented endothelium-similar properties including the NO generation and cellular interactions. The catalyst inserted into the bilayer provided an unexampled result in the release period and kinetics of NO, likely similar to the native endothelial system. Using three different cells including EC, smooth muscle cell (SMC), and macrophage, it was demonstrated that the membrane responds selectively to each cell in the manner of promotive, suppressive, and nonimmunoreactive, respectively. Taken together, the fundamental study on obtained results not only provides understanding of the kinetics of designed NO catalyst and cellular interactions of reassembled membranes but also suggests very useful data on rational design and development of many vascular implantable devices, even expandable toward to nonvascular biointerfacing devices.


Assuntos
Células Endoteliais , Óxido Nítrico , Bicamadas Lipídicas/metabolismo , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Titânio/metabolismo
13.
Carbohydr Polym ; 248: 116760, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919558

RESUMO

Catechol-conjugated chitosan (CCs), used as tissue adhesive, wound dressing, and hemostatic materials, has been drawing much more attention. However, most CCs tissue adhesives exhibit poor adhesion strength, and few studies on optimization of cohesion and adhesion strength of CCs derivatives have been conducted. This work focused on the balance between cohesion and adhesion strength of catechol-conjugated chitosan (CCs) derivatives via different mechanisms of chemical and enzymatic conjugation. CCs derivatives were characterized regarding its mechanical property, cytotoxicity, platelet adhesion and wound healing test. Mechanical properties could be optimized by the degree of catechol substitution, pH and the presence of oxidizing agent, resulting in that the highest value of adhesive shear strength to the porcine tissue is 64.8 ± 5.7 kPa. In addition, CCs derivatives exhibit decreased toxicity and promoted in vivo wound healing effects as comparing to a commercially available adhesive (Dermabond®). All the results demonstrate that CCs derivatives can be used as well-optimized tissue adhesives as well as a hemostat.


Assuntos
Adesivos/química , Catecóis/química , Quitosana/química , Adesivos Teciduais/química , Adesividade , Animais , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Oxirredução , Ratos Sprague-Dawley , Adesivos Teciduais/farmacologia , Cicatrização/efeitos dos fármacos
14.
Biomater Sci ; 8(19): 5427-5440, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32996919

RESUMO

Fibroblast-derived extracellular matrix (fECM)-supported scaffolds made up of poly(lactic-co-glycolic acid) were prepared with the enhanced preservation of ECM components by composites with magnesium hydroxide nanoparticles (MH NPs), and were applied for the renal tissue regeneration. MH NP utilization resulted in an increased ECM protein amount, decreased scaffold degradation, and surface hydrophilic modification. These effects were correlated with the improved adhesion and viability of renal proximal tubule epithelial cells on the scaffold. In vivo experiments demonstrated effects of fECM and MH NPs on renal regeneration. The number of glomeruli was the largest in the ECM scaffold with MH NPs as compared to the pristine scaffold and ECM scaffold without MH NPs. Quantitative PCR analysis exhibited less inflammation (IL-1ß, TNF-α, and IL-6) and fibrosis-related (vimentin, collagen I, and α-SMA) markers, whereas opposite results were found in regeneration-related markers (Pax2, vWf, Wt1, and Emx2). The concentration of renal function-related molecules, creatinine and blood urea nitrogen diminished in the ECM scaffold with MH NPs. All results indicate that MH NPs utilization for the renal regenerative scaffold is effective for in vitro and in vivo environments and is, therefore, a good model for regeneration of kidneys and other tissues, and organs.


Assuntos
Nanopartículas , Alicerces Teciduais , Matriz Extracelular , Rim , Hidróxido de Magnésio , Engenharia Tecidual
15.
Adv Exp Med Biol ; 1250: 189-198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32601946

RESUMO

Bulk blending is considered as one of the most effective and straightforward ways to improve the hemo-compatibility of blood-contacting polymeric biomaterials among many surface modification methods. Zwitterionic structure-, glycocalyx-like structure-, and heparin-like structure-based oligomers have been synthesized as additives and blended with base polymers to improve the blood compatibility of base polymers. Fluorinated end- and side-functionalized oligomers could promote the migration of functionalized groups to the surface of biomedical polymers without changing their bulk properties, and it highly depends on the number and concentration of functional groups. Moreover, oligomers having both zwitterion and fluorine are receiving considerable attention due to their desirable phase separation, which can avoid undesired protein adsorption and platelet adhesion. The surface analysis of the surface-modified materials is usually investigated by analytical tools such as contact angle measurement, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Blood compatibility is mainly evaluated via platelet adhesion and protein adsorption test, and the result showed a significant decrease in the amount of undesirable adsorption. These analyses indicated that surface modification using bulk blending technique effectively improves blood compatibility of polymeric biomaterials.


Assuntos
Materiais Biocompatíveis , Polímeros , Adsorção , Materiais Biocompatíveis/química , Humanos , Adesividade Plaquetária , Polímeros/química , Propriedades de Superfície
16.
Acta Biomater ; 111: 91-101, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32434081

RESUMO

The restoration of damaged endothelium is promising to reduce side effects, including restenosis and thrombosis, in the stent treatment for vascular diseases. Current technologies based on drug delivery for these complications still do not satisfy patients due to invariant recurrence rate. Recently, even if one approach was applied to clinical trial to develop the firstly commercialized stent employing circulating endothelial progenitor cells (EPCs) in blood vessels, it resulted in failure in clinical trial. Based on instruction of the failed case, we designed an advanced EPC-capture stent covered with anti-CD146 antibody (Ab) immobilized silicone nanofilament (SiNf) for the highly efficient and specific capture of not early but late stage of EPCs. In vitro cell capture test demonstrates enhanced capture efficiency and adhesion morphology of late EPCs on the modified substrate. The modified substrates could capture 8 times more late EPCs and even 3 times more mesenchymal stem cells (MSCs) as compared to unmodified one. A porcine model with high similarity to human reproduced in vivo results ideally translated from in vitro cell capture results. As restenosis indicators, lumen area, neointimal rate and stenosis area for modified stents were reduced at the range of 30-60% as compared to those for bare metal stent (BMS). Fibrin score indicating thrombosis was lowered less than half as comparing to that on BMS. These inspiring results are attributed to ~2-fold increased endothelial coverage, determined by immuno-histological staining. Taken together, the CD146 Ab-armed nanofilamentous stent could show great performance in the reduction of thrombosis and restenosis through re-endothelialization due to highly efficient specific cell capture. STATEMENT OF SIGNIFICANCE: Stents have been developed from simple metal stents to functionalized stents for past decades. However, they have still risks to relapse the occlusion in stented arteries. In this paper, we describe the fabrication and optimization of cell capturing stents to maximize the effective re-endothelialization through the serial coating of silicone nanofilaments and anti-CD146 antibody. The nanofilaments increase the amount of coated antibodies and provide the anchoring points of circulating angiogenic cells for strong focal adhesion. We demonstrate high immobilizing ability of circulating angiogenic cells (endotheliali progenitor cells and mesenchymal stem cells) in vitro under similar shear stress to coronary arteries (15 dyne/cm2). Also, we show accelerating re-endothelialization and the efficient prevention of restenosis in porcine coronary arteries in vivo.


Assuntos
Reestenose Coronária , Células Progenitoras Endoteliais , Nanoestruturas , Trombose , Animais , Antígeno CD146 , Constrição Patológica , Humanos , Stents , Suínos
17.
Colloids Surf B Biointerfaces ; 181: 174-184, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31129523

RESUMO

Drug-eluting stents (DESs) have been used for the treatment of cardiovascular diseases including stenosis. However, in-stent restenosis, thrombosis, and delayed re-endothelialization represent challenges for their clinical applications. Here, we demonstrate a novel work to overcome these limitations through surface modification technology. The cobalt-chromium (Co-Cr) surface was modified with antioxidants such as gallic acid (GA) and rutin (Ru) and the corresponding persulfates derivatives (i.e., GAS, and RuS) through a simple conjugation procedure. Various analyses tools such as ATR-FTIR, XPS, water contact angle, SEM, and AFM characterized the functionalized surface. The surface characterization confirmed that the antioxidant and the additional persulfates were successfully bonded to the Co-Cr surface. The results of in vitro endothelial cells proved that the persulfates derivatives showed the highest tendency to get rapid re-endothelialization especially RuS. In addition, it showed inhibition to smooth muscle cells (SMCs) as compared to control Co-Cr substrate. The persulfates modified substrates reduced the amount of adsorbed fibrinogen and albumin with higher stability to fetal bovine serum. Moreover, platelet study also demonstrated that Ru and RuS presented lower platelet adhesion with round shape morphology, whereas the control Co-Cr adhere and activate many platelets with pseudopodium morphology. Moreover, these modification processes did not cause any inflammatory responses. In conclusion, it is believed that the persulfates flavonoids have a great potential in the field of drug-eluting stents and blood contacting medical implants to improve blood compatibility, suppress SMCs, and get rapid re-endothelialization.


Assuntos
Prótese Vascular , Células Endoteliais/citologia , Flavonoides/química , Cromo/química , Cobalto/química , Tamanho da Partícula , Propriedades de Superfície
18.
ACS Cent Sci ; 5(3): 458-467, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30937373

RESUMO

Kidney diseases are a worldwide public health issue. Renal tissue regeneration using functional scaffolds with biomaterials has attracted a great deal of attention due to limited donor organ availability. Here, we developed a bioinspired scaffold that can efficiently induce renal tissue regeneration. The bioinspired scaffold was designed with poly(lactide-co-glycolide) (PLGA), magnesium hydroxide (Mg(OH)2), and decellularized renal extracellular matrix (ECM). The Mg(OH)2 inhibited materials-induced inflammatory reactions by neutralizing the acidic microenvironment formed by degradation products of PLGA, and the acellular ECM helped restore the biological function of kidney tissues. When the PLGA/ECM/Mg(OH)2 scaffold was implanted in a partially nephrectomized mouse model, it led to the regeneration of renal glomerular tissue with a low inflammatory response. Finally, the PLGA/ECM/Mg(OH)2 scaffold was able to restore renal function more effectively than the control groups. These results suggest that the bioinspired scaffold can be used as an advanced scaffold platform for renal disease treatment.

19.
Mater Sci Eng C Mater Biol Appl ; 94: 65-75, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423751

RESUMO

Synthetic biodegradable polymers including poly(lactide-co-glycolide) (PLGA) have been widely used as alternatives to metallic implantable materials in the orthopedic field due to their superior biocompatibility and biodegradability. However, weak mechanical properties of the biodegradable polymers and inflammatory reaction caused by the acidic degradation products have limited their biomedical applications. In this study, we have developed a PLGA composite containing beta-tricalcium phosphate (ß-TCP) and magnesium hydroxide (Mg(OH)2) as additives to improve mechanical, osteoconductivity, and anti-inflammation property of the biopolymer composite simultaneously. The ß-TCP has an osteoconductive effect and the Mg(OH)2 has a pH neutralizing effect. The PLGA/inorganic composites were uniformly blended via a twin extrusion process. The mechanical property of the PLGA/ß-TCP/Mg(OH)2 composite was improved compared to the pure PLGA. In particular, the addition of Mg(OH)2 suppressed the inflammatory reaction of normal human osteoblast (NHOst) cells and also inhibited the differentiation of pre-osteoclastic cells into osteoclasts. Moreover, synergistically upregulated late osteogenic differentiation of NHOst cells was observed on the PLGA/ß-TCP/Mg(OH)2 composite. Taken all together, we believe that the use of ß-TCP and Mg(OH)2 as additives with synthetic biodegradable polymers has great potential by the synergistic effect in orthopedic applications.


Assuntos
Anti-Inflamatórios/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/química , Hidróxido de Magnésio/química , Ortopedia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células RAW 264.7 , Propriedades de Superfície , Temperatura
20.
Adv Exp Med Biol ; 1077: 415-420, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357701

RESUMO

Biomedical devices have come a long way since they were first introduced as a medically interventional methodology in treating various types of diseases. Different techniques were employed to make the devices more biocompatible and promote tissue repair; such as chemical surface modifications, using novel materials as the bulk of a device, physical topological manipulations and so forth. One of the strategies that recently gained a lot of attention is the use of tissue-inspired biomaterials that are coated on the surface of biomedical devices via different coating techniques, such as the use of extracellular matrix (ECM) coatings, extracted cell membrane coatings, and so on. In this chapter, we will give a general overview of the different types of tissue-inspired coatings along with a summary of recent studies reported in this scientific arena.


Assuntos
Materiais Revestidos Biocompatíveis , Matriz Extracelular , Medicina Regenerativa , Humanos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...