Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 25(1): e13412, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279854

RESUMO

Stenotrophomonas rhizophila CFBP13503 is a seedborne commensal bacterial strain, which is efficiently transmitted to seedlings and can outcompete the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc8004). The type VI secretion system (T6SS), an interference contact-dependent mechanism, is a critical component of interbacterial competition. The involvement of the T6SS of S. rhizophila CFBP13503 in the inhibition of Xcc8004 growth and seed-to-seedling transmission was assessed. The T6SS cluster of S. rhizophila CFBP13503 and nine putative effectors were identified. Deletion of two T6SS structural genes, hcp and tssB, abolished the competitive advantage of S. rhizophila against Xcc8004 in vitro. The population sizes of these two bacterial species were monitored in seedlings after inoculation of radish seeds with mixtures of Xcc8004 and either S. rhizophila wild-type (wt) strain or isogenic hcp mutant. A significant decrease in the population size of Xcc8004 was observed during confrontation with the S. rhizophila wt in comparison with T6SS-deletion mutants in germinated seeds and seedlings. We found that the T6SS distribution among 835 genomes of the Stenotrophomonas genus is scarce. In contrast, in all available S. rhizophila genomes, T6SS clusters are widespread and mainly belong to the T6SS group i4. In conclusion, the T6SS of S. rhizophila CFBP13503 is involved in the antibiosis against Xcc8004 and reduces seedling transmission of Xcc8004 in radish. The distribution of this T6SS cluster in the S. rhizophila complex could make it possible to exploit these strains as biocontrol agents against X. campestris pv. campestris.


Assuntos
Raphanus , Sistemas de Secreção Tipo VI , Xanthomonas campestris , Plântula/microbiologia , Xanthomonas campestris/genética , Sementes/microbiologia , Stenotrophomonas/genética , Proteínas de Bactérias/genética
2.
Microbiol Spectr ; 11(6): e0147823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800964

RESUMO

IMPORTANCE: The type VI secretion system (T6SS) is a bacterial contractile injection system involved in bacterial competition by the delivery of antibacterial toxins. The T6SS consists of an envelope-spanning complex that recruits the baseplate, allowing the polymerization of a contractile tail structure. The tail is a tube wrapped by a sheath and topped by the tip of the system, the VgrG spike/PAAR complex. Effectors loaded onto the puncturing tip or into the tube are propelled in the target cells upon sheath contraction. The PAAR protein tips and sharpens the VgrG spike. However, the importance and the function of this protein remain unclear. Here, we provide evidence for association of PAAR at the tip of the VgrG spike. We also found that the PAAR protein is a T6SS critical component required for baseplate and sheath assembly.


Assuntos
Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675258

RESUMO

The type VI secretion system (T6SS) delivers enzymatic effectors into target cells to destroy them. Cells of the same strain protect themselves against effectors with immunity proteins that specifically inhibit effectors. Here, we report the identification and characterization of a Tle3 phospholipase effector and its cognate immunity protein Tli3-an outer membrane lipoprotein from adherent-invasive Escherichia coli (AIEC). Enzymatic assays demonstrate that purified Tle3AIEC has a phospholipase A1, and not A2, activity and that its toxicity is neutralized by the cognate immunity protein Tli3AIEC. Tli3AIEC binds Tle3 in a 1:1 stoichiometric ratio. Tle3AIEC, Tli3AIEC and the Tle3AIEC-Tli3AIEC complex were purified and subjected to crystallization. The Tle3AIEC-Tli3AIEC complex structure could not be solved by SeMet phasing, but only by molecular replacement when using an AlphaFold2 prediction model. Tle3AIEC exhibits an α/ß-hydrolase fold decorated by two protruding segments, including a N-terminus loop. Tli3AIEC displays a new fold of three stacked ß-sheets and a protruding loop that inserts in Tle3AIECcatalytic crevice. We showed, experimentally, that Tle3AIEC interacts with the VgrG AIEC cargo protein and AlphaFold2 prediction of the VgrGAIEC-Tle3AIEC complex reveals a strong interaction between the VgrGAIEC C-terminus adaptor and Tle3AIEC N-terminal loop.


Assuntos
Infecções por Escherichia coli , Sistemas de Secreção Tipo VI , Humanos , Escherichia coli/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/metabolismo , Aderência Bacteriana , Proteínas Correpressoras/metabolismo
4.
Mol Microbiol ; 115(3): 383-394, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217073

RESUMO

The bacterial type VI secretion system (T6SS) system is a contractile secretion apparatus that delivers proteins to neighboring bacterial or eukaryotic cells. Antibacterial effectors are mostly toxins that inhibit the growth of other species and help to dominate the niche. A broad variety of these toxins cause cell lysis of the prey cell by disrupting the cell envelope. Other effectors are delivered into the cytoplasm where they affect DNA integrity, cell division or exhaust energy resources. The modular nature of T6SS machinery allows different means of recruitment of toxic effectors to secreted inner tube and spike components that act as carriers. Toxic effectors can be translationally fused to the secreted components or interact with them through specialized structural domains. These interactions can also be assisted by dedicated chaperone proteins. Moreover, conserved sequence motifs in effector-associated domains are subject to genetic rearrangements and therefore engage in the diversification of the arsenal of toxic effectors. This review discusses the diversity of T6SS secreted toxins and presents current knowledge about their loading on the T6SS machinery.


Assuntos
Proteínas de Bactérias/fisiologia , Chaperonas Moleculares/fisiologia , Sistemas de Secreção Tipo VI/fisiologia , Antibacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Sequência Conservada , Citoplasma/efeitos dos fármacos , Interações Microbianas , Periplasma/efeitos dos fármacos , Domínios Proteicos
5.
EMBO J ; 39(11): e104129, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32350888

RESUMO

The bacterial type VI secretion system (T6SS) is a macromolecular machine that injects effectors into prokaryotic and eukaryotic cells. The mode of action of the T6SS is similar to contractile phages: the contraction of a sheath structure pushes a tube topped by a spike into target cells. Effectors are loaded onto the spike or confined into the tube. In enteroaggregative Escherichia coli, the Tle1 phospholipase binds the C-terminal extension of the VgrG trimeric spike. Here, we purify the VgrG-Tle1 complex and show that a VgrG trimer binds three Tle1 monomers and inhibits their activity. Using covalent cross-linking coupled to high-resolution mass spectrometry, we provide information on the sites of contact and further identify the requirement for a Tle1 N-terminal secretion sequence in complex formation. Finally, we report the 2.6-Å-resolution cryo-electron microscopy tri-dimensional structure of the (VgrG)3 -(Tle1)3 complex revealing how the effector binds its cargo, and how VgrG inhibits Tle1 phospholipase activity. The inhibition of Tle1 phospholipase activity once bound to VgrG suggests that Tle1 dissociation from VgrG is required upon delivery.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fosfolipases/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fosfolipases/genética , Sistemas de Secreção Tipo VI/genética
6.
Curr Biol ; 29(21): 3707-3713.e3, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31630952

RESUMO

The type VI secretion system (T6SS) is a multiprotein apparatus that injects protein effectors into target cells, hence playing a critical role in pathogenesis and in microbial communities [1-4]. The T6SS belongs to the broad family of contractile injection systems (CISs), such as Myoviridae bacteriophages and R-pyocins, that use a spring-like tail to propel a needle loaded with effectors [5, 6]. The T6SS tail comprises an assembly baseplate on which polymerizes a needle, made of stacked Hcp hexamers, tipped by the VgrG-PAAR spike complex and wrapped by the contractile sheath made of TssB and TssC [7-13]. The T6SS tail is anchored to the cell envelope by a membrane complex that also serves as channel for the passage of the needle upon sheath contraction [14-16]. In most CISs, the length of the tail sheath is invariable and is usually ensured by a dedicated protein called tape measure protein (TMP) [17-22]. Here, we show that the length of the T6SS tail is constant in enteroaggregative Escherichia coli cells, suggesting that it is strictly controlled. By overproducing T6SS tail subunits, we demonstrate that component stoichiometry does not participate to the regulation of tail length. The observation of longer T6SS tails when the apparatus is relocalized at the cell pole further shows that tail length is not controlled by a TMP. Finally, we show that tail stops its elongation when in contact with the opposite membrane and thus that T6SS tail length is determined by the cell width.


Assuntos
Escherichia coli/fisiologia , Sistemas de Secreção Tipo VI/fisiologia , Proteínas de Bactérias/química , Escherichia coli/química , Multimerização Proteica
7.
Microbiol Spectr ; 7(4)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31298206

RESUMO

The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells. The injection apparatus is composed of a baseplate on which is built a contractile tail tube/sheath complex. The inner tube, topped by the spike complex, is propelled outside of the cell by the contraction of the sheath. The injection system is anchored to the cell envelope and oriented towards the cell exterior by a trans-envelope complex. Effectors delivered by the T6SS are loaded within the inner tube or on the spike complex and can target prokaryotic and/or eukaryotic cells. Here we summarize the structure, assembly, and mechanism of action of the T6SS. We also review the function of effectors and their mode of recruitment and delivery.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/metabolismo , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Transporte Proteico , Sistemas de Secreção Tipo VI/genética
8.
Nat Microbiol ; 3(11): 1304-1313, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30275513

RESUMO

The type VI secretion system (T6SS) is a multiprotein weapon used by bacteria to destroy competitor cells. The T6SS contractile sheath wraps an effector-loaded syringe that is injected into the target cell. This tail structure assembles onto the baseplate that is docked to the membrane complex. In enteroaggregative Escherichia coli, TssA plays a central role at each stage of the T6SS assembly pathway by stabilizing the baseplate and coordinating the polymerization of the tail. Here we adapted an assay based on APEX2-dependent biotinylation to identify the proximity partners of TssA in vivo. By using stage-blocking mutations, we define the temporal contacts of TssA during T6SS biogenesis. This proteomic mapping approach also revealed an additional partner of TssA, TagA. We show that TagA is a cytosolic protein tightly associated with the membrane. Analyses of sheath dynamics further demonstrate that TagA captures the distal end of the sheath to stop its polymerization and to maintain it under the extended conformation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Metaloendopeptidases/metabolismo , Sistemas de Secreção Tipo VI/biossíntese , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Metaloendopeptidases/genética , Modelos Moleculares , Polimerização , Conformação Proteica , Mapas de Interação de Proteínas , Proteômica , Sistemas de Secreção Tipo VI/química
9.
J Mol Biol ; 430(18 Pt B): 3143-3156, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30031895

RESUMO

Contractile injection systems are multiprotein complexes that use a spring-like mechanism to deliver effectors into target cells. In addition to using a conserved mechanism, these complexes share a common core known as the tail. The tail comprises an inner tube tipped by a spike, wrapped by a contractile sheath, and assembled onto a baseplate. Here, using the type VI secretion system (T6SS) as a model of contractile injection systems, we provide molecular details on the interaction between the inner tube and the spike. Reconstitution into the Escherichia coli heterologous host in the absence of other T6SS components and in vitro experiments demonstrated that the Hcp tube component and the VgrG spike interact directly. VgrG deletion studies coupled to functional assays showed that the N-terminal domain of VgrG is sufficient to interact with Hcp, to initiate proper Hcp tube polymerization, and to promote sheath dynamics and Hcp release. The interaction interface between Hcp and VgrG was then mapped using docking simulations, mutagenesis, and cysteine-mediated cross-links. Based on these results, we propose a model in which the VgrG base serves as adaptor to recruit the first Hcp hexamer and initiates inner tube polymerization.


Assuntos
Proteínas de Bactérias/química , Proteínas Hemolisinas/química , Complexos Multiproteicos/química , Proteínas de Bactérias/metabolismo , Dissulfetos , Proteínas Hemolisinas/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Relação Estrutura-Atividade , Sistemas de Secreção Tipo VI
10.
J Mol Biol ; 430(7): 987-1003, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29458124

RESUMO

The type VI secretion system (T6SS) is a multiprotein complex used by bacteria to deliver effectors into target cells. The T6SS comprises a bacteriophage-like contractile tail structure anchored to the cell envelope by a membrane complex constituted of the TssJ outer-membrane lipoprotein and the TssL and TssM inner-membrane proteins. TssJ establishes contact with the periplasmic domain of TssM whereas the transmembrane segments of TssM and its cytoplasmic domain interact with TssL. TssL protrudes in the cytoplasm but is anchored by a C-terminal transmembrane helix (TMH). Here, we show that TssL TMH dimerization is required for the stability of the protein and for T6SS function. Using the TOXCAT assay and point mutations of the 23 residues of the TssL TMH, we identified Thr194 and Trp199 as necessary for TssL TMH dimerization. NMR hydrogen-deuterium exchange experiments demonstrated the existence of a dimer with the presence of Trp185 and Trp199 at the interface. A structural model based on molecular dynamic simulations shows that TssL TMH dimer formation involves π-π interactions resulting from the packing of the two Trp199 rings at the C-terminus and of the six aromatic rings of Tyr184, Trp185 and Trp188 at the N-terminus of the TMH.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Triptofano/química , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Estabilidade Proteica
11.
Bioessays ; 39(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28817192

RESUMO

The Type VI secretion system (T6SS) is a multiprotein and mosaic apparatus that delivers protein effectors into prokaryotic or eukaryotic cells. Recent data on the enteroaggregative Escherichia coli (EAEC) T6SS have provided evidence that the TssA protein is a key component during T6SS biogenesis. The T6SS comprises a trans-envelope complex that docks the baseplate, a cytoplasmic complex that represents the assembly platform for the tail. The T6SS tail is structurally, evolutionarily and functionally similar to the contractile tails of bacteriophages. We have shown that TssA docks to the membrane complex, recruits the baseplate complex and initiates and coordinates the polymerization of the inner tube with that of the sheath. Here, we review these recent findings, discuss the variations within TssA-like proteins, speculate on the role of EAEC TssA in T6SS biogenesis and propose future research perspectives.


Assuntos
Sistemas de Secreção Tipo VI/metabolismo , Bacteriófagos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
12.
Methods Mol Biol ; 1615: 459-464, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28667629

RESUMO

Bacterial secretion systems allow the transport of proteins, called effectors, as well as external machine components in the extracellular medium or directly into target cells. Comparison of the secretome, i.e. the proteins released in the culture medium, of wild-type and mutant cells provides information on the secretion profile. In addition, mass spectrometry analyses of the culture supernatant of bacteria grown in liquid culture under secreting conditions allows the identification of secretion system substrates. Upon identification of the substrates, the secretion profile serves as a tool to test the functionality of secretion systems. Here we present a classical method used to concentrate the culture supernatant, based on trichloroacetic acid precipitation.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Proteínas de Bactérias/química , Western Blotting , Espectrometria de Massas
13.
Sci Rep ; 6: 34405, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698444

RESUMO

The Type VI secretion system (T6SS) is a versatile machine that delivers toxins into either eukaryotic or bacterial cells. It thus represents a key player in bacterial pathogenesis and inter-bacterial competition. Schematically, the T6SS can be viewed as a contractile tail structure anchored to the cell envelope. The contraction of the tail sheath propels the inner tube loaded with effectors towards the target cell. The components of the contracted tail sheath are then recycled by the ClpV AAA+ ATPase for a new cycle of tail elongation. The T6SS is widespread in Gram-negative bacteria and most of their genomes carry several copies of T6SS gene clusters, which might be activated in different conditions. Here, we show that the ClpV ATPases encoded within the two T6SS gene clusters of enteroaggregative Escherichia coli are not interchangeable and specifically participate to the activity of their cognate T6SS. Here we show that this specificity is dictated by interaction between the ClpV N-terminal domains and the N-terminal helices of their cognate TssC1 proteins. We also present the crystal structure of the ClpV1 N-terminal domain, alone or in complex with the TssC1 N-terminal peptide, highlighting the commonalities and diversities in the recruitment of ClpV to contracted sheaths.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Família Multigênica , Sistemas de Secreção Tipo VI/química , Adenosina Trifosfatases/genética , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Domínios Proteicos , Sistemas de Secreção Tipo VI/genética
14.
J Mol Biol ; 428(22): 4413-4423, 2016 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-27600409

RESUMO

The type VI secretion system (T6SS) is a multiprotein complex that delivers toxin effectors in both prokaryotic and eukaryotic cells. It is constituted of a long cytoplasmic structure-the tail-made of stacked Hcp hexamers and wrapped by a contractile sheath. Contraction of the sheath propels the inner tube capped by the VgrG spike protein toward the target cell. This tubular structure is built onto an assembly platform-the baseplate-that is composed of the TssEFGK-VgrG subunits. During the assembly process, the baseplate is recruited to a trans-envelope complex comprising the TssJ outer membrane lipoprotein and the TssL and TssM inner membrane proteins. This membrane complex serves as a docking station for the baseplate/tail and as a channel for the passage of the inner tube during sheath contraction. The baseplate is recruited to the membrane complex through multiple contacts including interactions of TssG and TssK with the cytoplasmic loop of TssM and of TssK with the cytoplasmic domain of TssL, TssLCyto. Here, we show that TssLCyto interacts also with the TssE baseplate subunit. Based on the available TssLCyto structures, we targeted conserved regions and specific features of TssLCyto in enteroaggregative Escherichia coli. By using bacterial two-hybrid analysis and co-immunoprecipitation, we further show that the disordered L3-L4 loop is necessary to interact with TssK and that the L6-L7 loop mediates the interaction with TssE, whereas the TssM cytoplasmic loop binds the conserved groove of TssLCyto. Finally, competition assays demonstrated that these interactions are physiologically important for T6SS function.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Análise Mutacional de DNA , Imunoprecipitação , Mutagênese Sítio-Dirigida , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Técnicas do Sistema de Duplo-Híbrido
15.
Proc Natl Acad Sci U S A ; 113(34): E5044-51, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27503894

RESUMO

The mammalian gastrointestinal tract is colonized by a high-density polymicrobial community where bacteria compete for niches and resources. One key competition strategy includes cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), a multiprotein needle-like apparatus that injects effector proteins into prokaryotic and/or eukaryotic target cells. However, the contribution of T6SS antibacterial activity during pathogen invasion of the gut has not been demonstrated. We report that successful establishment in the gut by the enteropathogenic bacterium Salmonella enterica serovar Typhimurium requires a T6SS encoded within Salmonella pathogenicity island-6 (SPI-6). In an in vitro setting, we demonstrate that bile salts increase SPI-6 antibacterial activity and that S Typhimurium kills commensal bacteria in a T6SS-dependent manner. Furthermore, we provide evidence that one of the two T6SS nanotube subunits, Hcp1, is required for killing Klebsiella oxytoca in vitro and that this activity is mediated by the specific interaction of Hcp1 with the antibacterial amidase Tae4. Finally, we show that K. oxytoca is killed in the host gut in an Hcp1-dependent manner and that the T6SS antibacterial activity is essential for Salmonella to establish infection within the host gut. Our findings provide an example of pathogen T6SS-dependent killing of commensal bacteria as a mechanism to successfully colonize the host gut.


Assuntos
Antibiose , Proteínas de Bactérias/toxicidade , Salmonelose Animal/microbiologia , Salmonella typhimurium/patogenicidade , Sistemas de Secreção Tipo VI/genética , Fatores de Virulência/toxicidade , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/farmacologia , Meios de Cultura/química , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Ilhas Genômicas , Klebsiella oxytoca/efeitos dos fármacos , Klebsiella oxytoca/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Salmonelose Animal/patologia , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
16.
EcoSal Plus ; 7(1)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27223818

RESUMO

The type VI secretion system (T6SS) is a multiprotein complex widespread in Proteobacteria and dedicated to the delivery of toxins into both prokaryotic and eukaryotic cells. It thus participates in interbacterial competition as well as pathogenesis. The T6SS is a contractile weapon, related to the injection apparatus of contractile tailed bacteriophages. Basically, it assembles an inner tube wrapped by a sheath-like structure and anchored to the cell envelope via a membrane complex. The energy released by the contraction of the sheath propels the inner tube through the membrane channel and toward the target cell. Although the assembly and the mechanism of action are conserved across species, the repertoire of secreted toxins and the diversity of the regulatory mechanisms and of target cells make the T6SS a highly versatile secretion system. The T6SS is particularly represented in Escherichia coli pathotypes and Salmonella serotypes. In this review we summarize the current knowledge regarding the prevalence, the assembly, the regulation, and the roles of the T6SS in E. coli, Salmonella, and related species.


Assuntos
Enterobacteriaceae/metabolismo , Escherichia coli/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Transporte Biológico , Membrana Celular , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidade , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Salmonella/genética , Salmonella/metabolismo , Salmonella/patogenicidade
17.
Nature ; 531(7592): 59-63, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26909579

RESUMO

Contractile tails are composed of an inner tube wrapped by an outer sheath assembled in an extended, metastable conformation that stores mechanical energy necessary for its contraction. Contraction is used to propel the rigid inner tube towards target cells for DNA or toxin delivery. Although recent studies have revealed the structure of the contractile sheath of the type VI secretion system, the mechanisms by which its polymerization is controlled and coordinated with the assembly of the inner tube remain unknown. Here we show that the starfish-like TssA dodecameric complex interacts with tube and sheath components. Fluorescence microscopy experiments in enteroaggregative Escherichia coli reveal that TssA binds first to the type VI secretion system membrane core complex and then initiates tail polymerization. TssA remains at the tip of the growing structure and incorporates new tube and sheath blocks. On the basis of these results, we propose that TssA primes and coordinates tail tube and sheath biogenesis.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Polimerização , Cristalografia por Raios X , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Terciária de Proteína , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VI/ultraestrutura
18.
Mol Microbiol ; 99(6): 1099-118, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26714038

RESUMO

The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath-like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero-aggregative Escherichia coli Sci-1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 possesses phospholipase A1 and A2 activities required for the interbacterial competition. Self-protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity. Tle1 is delivered into the periplasm of the prey cells using the VgrG1 needle spike protein as carrier. Further analyses demonstrate that the C-terminal extension domain of VgrG1, including a transthyretin-like domain, is responsible for the interaction with Tle1 and its subsequent delivery into target cells. Based on these results, we propose an additional mechanism of transport of T6SS effectors in which cognate effectors are selected by specific motifs located at the C-terminus of VgrG proteins.


Assuntos
Escherichia coli/metabolismo , Fosfolipases A1/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Caenorhabditis elegans , Escherichia coli/patogenicidade , Modelos Moleculares , Família Multigênica , Fosfolipases A1/química , Fosfolipases A1/genética , Domínios Proteicos , Sistemas de Secreção Tipo VI/genética , Virulência
19.
Trends Microbiol ; 22(9): 498-507, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25042941

RESUMO

The type VI secretion system (T6SS) is a macromolecular machine that delivers protein effectors into both prokaryotic and eukaryotic cells, therefore participating in interbacterial competition and virulence. The T6SS is functionally and structurally similar to the contractile bacteriophage cell puncturing device: the contraction of a sheath-like structure is believed to propel an inner tube terminated by a spike towards target cells, allowing the delivery of effectors. In this review, we summarize recent advances in the identification and characterization of T6SS effector proteins, highlighting the broad repertoire of enzymatic activities, and discuss recent findings relating to the secretion mechanisms.


Assuntos
Proteínas de Bactérias/fisiologia , Sistemas de Secreção Bacterianos/fisiologia , Fatores de Virulência/fisiologia , Proteínas de Bactérias/metabolismo , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Transporte Biológico , Interações Microbianas , Modelos Moleculares , Virulência
20.
Biochim Biophys Acta ; 1843(8): 1664-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24681160

RESUMO

The Type VI secretion system (T6SS) delivers protein effectors to diverse cell types including prokaryotic and eukaryotic cells, therefore it participates in inter-bacterial competition and pathogenesis. The T6SS is constituted of an envelope-spanning complex anchoring a cytoplasmic tubular edifice. This tubular structure is evolutionarily, functionally and structurally related to the tail of contractile phages. It is composed of an inner tube tipped by a spike complex, and engulfed within a sheath-like structure. This structure assembles onto a platform called "baseplate" that is connected to the membrane sub-complex. The T6SS functions as a nano-crossbow: upon contraction of the sheath, the inner tube is propelled towards the target cell, allowing effector delivery. This review focuses on the architecture and biogenesis of this fascinating secretion machine, highlighting recent advances regarding the assembly of the membrane or tail complexes. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Assuntos
Bactérias/patogenicidade , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Transporte Proteico/genética , Bactérias/química , Proteínas de Bactérias/química , Bacteriófagos/química , Bacteriófagos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Citoplasma/metabolismo , Células Eucarióticas/metabolismo , Células Procarióticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...