Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(28): e2300147, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026686

RESUMO

It is critical to facilitate surface interaction for liquid-solid two-phase photocatalytic reactions. This study demonstrates more advanced, efficient, and rich molecular-level active sites to extend the performance of carbon nitride (CN). To achieve this, semi-isolated vanadium dioxide is obtained by controlling the growth of non-crystalline VO2 anchored into sixfold cavities of the CN lattice. As a proof-of-concept, the experimental and computational results solidly corroborate that this atomic-level design has potentially taken full advantage of two worlds. The photocatalyst comprises the highest dispersion of catalytic sites with the lowest aggregation, like single-atom catalysts. It also demonstrates accelerated charge transfer with the boosted electron-hole pairs, mimicking heterojunction photocatalysts. Density functional theory calculations show that single-site VO2 anchored into the sixfold cavities significantly elevates the Fermi level, compared with the typical heterojunction. The unique features of semi-isolated sites result in a high visible-light photocatalytic H2 production of 645 µmol h-1 g-1 with only 1 wt% Pt. They also represent an excellent photocatalytic degradation for rhodamine B as well as tetracycline, surpassing the activities obtained from many conventional heterojunctions. This study presents exciting opportunities for the design of new heterogeneous metal oxide for a variety of reactions.

2.
ACS Appl Mater Interfaces ; 13(27): 31785-31798, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34223765

RESUMO

Making heterojunctions between semiamorphous carbon nitride (CN) and other well-matched semiconductors (or even insulators) can solve many photocatalytic problems such as the recombination of charge carriers. However, many researchers encounter intrinsic problems including the lack of detailed information on contact boundaries in their heterojunctions, particularly in the amorphous/amorphous interface. In addition, the roles of contact boundaries in the photocatalytic mechanisms of many heterojunctions are still obscure. This study synthesized a novel CN/SiO2/WO3 photocatalyst having two different contact features by constructing an amorphous/amorphous (CN/SiO2) interface and a crystalline/amorphous (WO3/CN) interface to provide deep insights into heterojunction interfaces. SiO2 plays an exceptional role as a major component in the separation and migration of charge carriers. It not only modifies the texture but also transfers electrons. Surprisingly, the amorphous/amorphous interface shows an unpredicted capability for decreasing the recombination of electron-hole pairs. Based on capturing experiments and photoluminescence investigations, the amorphous/amorphous interface is unprecedently present in the production of hydroxyl radicals, while the crystalline/amorphous interface gives more superoxide radicals. This work provides a platform that opens a new perspective on the selection of mutual photocatalysts. It extends boundaries of conventional heterojunctions.

3.
Environ Pollut ; 259: 113902, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31918149

RESUMO

A series of phosphorus containing ZnO (P-ZnO) photocatalysts with various percentages of phosphorus were successfully synthesized using the hydrothermal method. The structural, physical and optical properties of the obtained microparticles were investigated using diverse techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible diffusion reflectance spectroscopy (UV-Vis DRS), photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and N2 adsorption-desorption analysis. The photocatalytic activities of the pure and P-ZnO samples were evaluated for the degradation of Rhodamine B (RhB) under visible light irradiation. The parameters such as pH, catalyst dosage, contaminant concentration and effect of persulfate as an oxidant were studied. It was found that the P-ZnO1.8% photocatalyst could destroy 99% of RhB (5 ppm) in 180 min at pH = 7; furthermore, it degraded ∼100% of 5 and 10 ppm of the RhB pollutant in 120 and 180 min, respectively, only by adding 0.01 g of persulfate into the reaction solution. To determine the photocatalytic mechanism, 2-propanol, benzoquinone and EDTA were used and it was indicated that hydroxyl radicals, superoxide ions and holes, all had major roles in the photocatalytic degradation but the hydroxyl radical effect was the most significant. The phenol degradation was also investigated using the P-ZnO1.8% optimum photocatalyst which could destroy 53% of the phenol (5 ppm) in 180 min. According to the reusability test, it was proved that after 5 cycles, the catalyst activity was not highly changed and it was potentially capable of pollutant degradation.


Assuntos
Luz , Fósforo , Purificação da Água/métodos , Óxido de Zinco , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Fósforo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/instrumentação , Óxido de Zinco/química
4.
J Colloid Interface Sci ; 507: 59-73, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28780336

RESUMO

Porous CeO2/sulfur-doped g-C3N4 (CeO2/CNS) composites were synthesized by one-pot thermal condensation of thiourea and cerium nitrate as starting materials. The obtained CeO2(x)/CNS composites (x=8.4, 9.5 and 10.4wt%) with different CeO2 contents were characterized by the XRD, FT-IR, XPS, TEM, BET, DRS and PL analyses. The TEM images displayed a nonporous and platelet-like morphology for pure CNS but a nanoporous structure with numerous uniform pore sizes of ∼40nm for the CeO2(9.5)/CNS composite. The XRD phase structures and TEM morphologies confirmed that structural evolution trend and stacking degree of CNS were disrupted in precense of the CeO2 nanoparticles. The optimized photocatalyst, i.e. CeO2(9.5)/CNS nanocomposite, exhibited the highest visible light photocatalytic activity (91.4% after 150min) with a reaction rate constant of 0.0152min-1 toward methylene blue (MB) degradation which was greater compared with the individual CNS (0.0044min-1) and CeO2 (0.0031min-1) photocatalysts. This enhanced photocatalytic performance was originated from heterojunctions formed between CeO2 and CNS that improved the effective charge transfer through interfacial interactions between both components. The heterojunction prepared displayed excellent stability for the photocatalytic activity under the optimized conditions including catalyst dosage 0.08g, initial dye concentration 7mg/L and irradiation time 150min which was obtained using response surface methodology (RSM). The trapping experiments using isopropanol, benzoquinone and ethylenediaminetetraacetic as the OH, O2- and h+ scavengers, respectively, verified that the OH and O2- as major species directly attacked onto the MB molecules while h+ showed a negligible role. Finally, it could be stated that simultaneous doping of both sulfur and CeO2 within the g-C3N4 structure using a simple one-pot synthetic process produced very active photocatalysts illustrating their potential for practical applications in industrial water treatment purposes.

5.
Langmuir ; 33(28): 7062-7078, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28648078

RESUMO

Mesoporous sulfur-doped graphitic carbon nitride (MCNS) materials were successfully synthesized using thiourea as a low-cost precursor and SiO2 gel solution as a template through a simple thermal condensation method. The effects of three synthesis key factors, namely, the reaction temperature, the reaction time, and the weight ratio of SiO2/thiourea, and also their interactions on the removal rate of methyl orange (MO) were investigated using response surface methodology, and the samples were subjected to several characterization techniques. Results showed that the optimized physicochemical properties could be achieved for the MCNS samples by controlling the synthesis key factors, and it was found that the reaction temperature and the reaction time had significant influences on the MO photocatalytic removal. Among bulk graphitic carbon nitride (g-C3N4), CN (undoped g-C3N4), CNS (sulfur-doped g-C3N4 without template), and TiO2 (Degussa P25) samples, the optimized MCNS-4 illustrated the highest photocatalytic activity toward the removal of MO under visible light irradiation. The enhanced performance originated from the synergistic effects of high surface area, mesoporous texture, sulfur doping, and high visible light absorption, which were helpful for the separation and transportation of the photogenerated electron-hole pairs. Furthermore, MCNS-4 revealed high reusability and stability without any significant decrease in its efficiency. Our findings not only confirm the importance of simultaneous sulfur doping and mesoporous structure to synthesize highly active photocatalysts but also might provide a new insight into textural engineering of carbon nitride materials only by the optimization of the synthesis key variables, considering their interactions without relying on extra metal oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...