Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 19: 1881-1894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116243

RESUMO

Anion-π catalysis, introduced in 2013, stands for the stabilization of anionic transition states on π-acidic aromatic surfaces. Anion-π catalysis on carbon allotropes is particularly attractive because high polarizability promises access to really strong anion-π interactions. With these expectations, anion-π catalysis on fullerenes has been introduced in 2017, followed by carbon nanotubes in 2019. Consistent with expectations from theory, anion-π catalysis on carbon allotropes generally increases with polarizability. Realized examples reach from enolate addition chemistry to asymmetric Diels-Alder reactions and autocatalytic ether cyclizations. Currently, anion-π catalysis on carbon allotropes gains momentum because the combination with electric-field-assisted catalysis promises transformative impact on organic synthesis.

2.
Chemistry ; 28(65): e202202698, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36136376

RESUMO

We present a quaterthiophene and sexithiophene that can reversibly change their effective π-conjugation length through photoexcitation. The reported compounds make use of light-responsive molecular actuators consisting of an azobenzene attached to a bithiophene unit by both direct and linker-assisted bonding. Upon exposure to 350 nm light, the azobenzene undergoes trans-to-cis isomerization, thus mechanically inducing the oligothiophene to assume a planar conformation (extended π-conjugation). Exposure to 254 nm wavelength promotes azobenzene cis-to-trans isomerization, forcing the thiophenic backbones to twist out of planarity (confined π-conjugation). Twisted conformations are also reached by cis-to-trans thermal relaxation at a rate that increases proportionally with the conjugation length of the oligothiophene moiety. The molecular conformations of quaterthiophene and sexithiophene were characterized by using steady-state UV-vis spectroscopy, X-ray crystallography and quantum-chemical modeling. Finally, we tested the proposed light-responsive oligothiophenes in field-effect transistors to probe the photo-induced tuning of their electronic properties.

3.
RSC Adv ; 11(7): 4104-4111, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35424373

RESUMO

Metal-free heterogeneous photocatalysis, which requires no prior catalyst immobilization or chemical modification and can operate in green solvents, represents a highly-sought after, yet currently still underdeveloped, synthetic method. In this report we present a comparative study which aims to evaluate the use of unmodified fullerene soot and a fullerene nanodispersion as non-soluble and quasi-soluble carbon-based photocatalysts, respectively, for sulfide oxidation and other transformations using oxygen as an oxidant in ethanol. A wide range of sulfoxides were successfully prepared with good yields and chemoselectivity using a very low catalyst loading. The fullerene soot photocatalyst is easily recovered and shows excellent stability of the catalytic properties. The reaction was shown to proceed via a singlet oxygen pathway and has a high selectivity for aliphatic sulfides, whereas the oxidation of thioanisoles can be accomplished using an amine mediated electron transfer mechanism. The applicability of the fullerene nanodispersion as a general purpose photocatalyst was demonstrated in radical cyclization, boronic acid oxidation and imine formation reactions.

4.
Phys Chem Chem Phys ; 22(14): 7392-7403, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32215384

RESUMO

Solid state NIR-to-visible photon upconversion (UC) mediated by triplet-triplet annihilation (TTA) is necessitated by numerous practical applications. Yet, efficient TTA-UC remains a highly challenging task. In this work palladium phthalocyanine-sensitized NIR-to-vis solid UC films based on a popular rubrene emitter are thoroughly studied with the primary focus on revealing the impact of t-butyl substitution in rubrene on the TTA-UC performance. The solution-processed UC films were additionally doped with a small amount of emissive singlet sink tetraphenyldibenzoperiflanthene (DBP) for collecting upconverted singlets from rubrene and in this way diminishing detrimental singlet fission. Irrespective of the excitation conditions used, t-butyl-substituted rubrene (TBR) was found to exhibit enhanced TTA-UC performance as compared to that of rubrene at an optimal emitter doping of 80 wt% in polystyrene films. Explicitly, in the TTA dominated regime attained at high excitation densities, 4-fold higher UC quantum yield (ΦUC) achieved in TBR-based films was caused by the reduced fluorescence concentration quenching mainly due to suppressed singlet fission. Under low light conditions, i.e. in the regime governed by spontaneous triplet decay, even though triplet exciton diffusion was obstructed in TBR films by t-butyl moieties, the subsequently reduced TTA rate was counterbalanced by both suppressed singlet fission and non-radiative triplet quenching, still ensuring higher ΦUC of these films as compared to those of unsubstituted rubrene films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...