Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(19): eadl4481, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728393

RESUMO

Screening, a ubiquitous phenomenon associated with the shielding of electric fields by surrounding charges, has been widely adopted as a means to modify a material's properties. While most studies have relied on static changes of screening through doping or gating thus far, here we demonstrate that screening can also drive the onset of distinct quantum states on the ultrafast timescale. By using time- and angle-resolved photoemission spectroscopy, we show that intense optical excitation can drive 1T-TiSe2, a prototypical charge density wave material, almost instantly from a gapped into a semimetallic state. By systematically comparing changes in band structure over time and excitation strength with theoretical calculations, we find that the appearance of this state is likely caused by a dramatic reduction of the screening length. In summary, this work showcases how optical excitation enables the screening-driven design of a nonequilibrium semimetallic phase in TiSe2, possibly providing a general pathway into highly screened phases in other strongly correlated materials.

2.
Nat Commun ; 15(1): 3845, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714749

RESUMO

Harnessing electronic excitations involving coherent coupling to bosonic modes is essential for the design and control of emergent phenomena in quantum materials. In situations where charge carriers induce a lattice distortion due to the electron-phonon interaction, the conducting states get "dressed", which leads to the formation of polaronic quasiparticles. The exploration of polaronic effects on low-energy excitations is in its infancy in two-dimensional materials. Here, we present the discovery of an interlayer plasmon polaron in heterostructures composed of graphene on top of single-layer WS2. By using micro-focused angle-resolved photoemission spectroscopy during in situ doping of the top graphene layer, we observe a strong quasiparticle peak accompanied by several carrier density-dependent shake-off replicas around the single-layer WS2 conduction band minimum. Our results are explained by an effective many-body model in terms of a coupling between single-layer WS2 conduction electrons and an interlayer plasmon mode. It is important to take into account the presence of such interlayer collective modes, as they have profound consequences for the electronic and optical properties of heterostructures that are routinely explored in many device architectures involving 2D transition metal dichalcogenides.

3.
Nat Commun ; 15(1): 1486, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374074

RESUMO

Atomic monolayers on semiconductor surfaces represent an emerging class of functional quantum materials in the two-dimensional limit - ranging from superconductors and Mott insulators to ferroelectrics and quantum spin Hall insulators. Indenene, a triangular monolayer of indium with a gap of ~ 120 meV is a quantum spin Hall insulator whose micron-scale epitaxial growth on SiC(0001) makes it technologically relevant. However, its suitability for room-temperature spintronics is challenged by the instability of its topological character in air. It is imperative to develop a strategy to protect the topological nature of indenene during ex situ processing and device fabrication. Here we show that intercalation of indenene into epitaxial graphene provides effective protection from the oxidising environment, while preserving an intact topological character. Our approach opens a rich realm of ex situ experimental opportunities, priming monolayer quantum spin Hall insulators for realistic device fabrication and access to topologically protected edge channels.

4.
Nature ; 625(7995): 494-499, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233619

RESUMO

Moiré superlattices based on van der Waals bilayers1-4 created at small twist angles lead to a long wavelength pattern with approximate translational symmetry. At large twist angles (θt), moiré patterns are, in general, incommensurate except for a few discrete angles. Here we show that large-angle twisted bilayers offer distinctly different platforms. More specifically, by using twisted tungsten diselenide bilayers, we create the incommensurate dodecagon quasicrystals at θt = 30° and the commensurate moiré crystals at θt = 21.8° and 38.2°. Valley-resolved scanning tunnelling spectroscopy shows disparate behaviours between moiré crystals (with translational symmetry) and quasicrystals (with broken translational symmetry). In particular, the K valley shows rich electronic structures exemplified by the formation of mini-gaps near the valence band maximum. These discoveries demonstrate that bilayers with large twist angles offer a design platform to explore moiré physics beyond those formed with small twist angles.

5.
Nat Commun ; 14(1): 7512, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980419

RESUMO

During a band-gap-tuned semimetal-to-semiconductor transition, Coulomb attraction between electrons and holes can cause spontaneously formed excitons near the zero-band-gap point, or the Lifshitz transition point. This has become an important route to realize bulk excitonic insulators - an insulating ground state distinct from single-particle band insulators. How this route manifests from weak to strong coupling is not clear. In this work, using angle-resolved photoemission spectroscopy (ARPES) and high-resolution synchrotron x-ray diffraction (XRD), we investigate the broken symmetry state across the semimetal-to-semiconductor transition in a leading bulk excitonic insulator candidate system Ta2Ni(Se,S)5. A broken symmetry phase is found to be continuously suppressed from the semimetal side to the semiconductor side, contradicting the anticipated maximal excitonic instability around the Lifshitz transition. Bolstered by first-principles and model calculations, we find strong interband electron-phonon coupling to play a crucial role in the enhanced symmetry breaking on the semimetal side of the phase diagram. Our results not only provide insight into the longstanding debate of the nature of intertwined orders in Ta2NiSe5, but also establish a basis for exploring band-gap-tuned structural and electronic instabilities in strongly coupled systems.

6.
Nano Lett ; 23(22): 10342-10349, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922394

RESUMO

Exfoliated magnetic 2D materials enable versatile tuning of magnetization, e.g., by gating or providing proximity-induced exchange interaction. However, their electronic band structure after exfoliation has not been probed, presumably due to their photochemical sensitivity. Here, we provide micrometer-scale angle-resolved photoelectron spectroscopy of the exfoliated intralayer antiferromagnet MnPS3 above and below the Néel temperature down to one monolayer. Favorable comparison with density functional theory calculations enables identifying the orbital character of the observed bands. Consistently, we find pronounced changes across the Néel temperature for bands consisting of Mn 3d and 3p levels of adjacent S atoms. The deduced orbital mixture indicates that the superexchange is relevant for the magnetic interaction. There are only minor changes between monolayer and thicker films, demonstrating the predominant 2D character of MnPS3. The novel access is transferable to other MPX3 materials (M: transition metal, P: phosphorus, X: chalcogenide), providing several antiferromagnetic arrangements.

7.
Nature ; 623(7986): 301-306, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938707

RESUMO

Electronic flat-band materials host quantum states characterized by a quenched kinetic energy. These flat bands are often conducive to enhanced electron correlation effects and emergent quantum phases of matter1. Long studied in theoretical models2-4, these systems have received renewed interest after their experimental realization in van der Waals heterostructures5,6 and quasi-two-dimensional (2D) crystalline materials7,8. An outstanding experimental question is if such flat bands can be realized in three-dimensional (3D) networks, potentially enabling new materials platforms9,10 and phenomena11-13. Here we investigate the C15 Laves phase metal CaNi2, which contains a nickel pyrochlore lattice predicted at a model network level to host a doubly-degenerate, topological flat band arising from 3D destructive interference of electronic hopping14,15. Using angle-resolved photoemission spectroscopy, we observe a band with vanishing dispersion across the full 3D Brillouin zone that we identify with the pyrochlore flat band as well as two additional flat bands that we show arise from multi-orbital interference of Ni d-electrons. Furthermore, we demonstrate chemical tuning of the flat-band manifold to the Fermi level that coincides with enhanced electronic correlations and the appearance of superconductivity. Extending the notion of intrinsic band flatness from 2D to 3D, this provides a potential pathway to correlated behaviour predicted for higher-dimensional flat-band systems ranging from tunable topological15 to fractionalized phases16.

8.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850856

RESUMO

Spin- and angle-resolved photoemission spectroscopy ("spin-ARPES") is a powerful technique for probing the spin degree-of-freedom in materials with nontrivial topology, magnetism, and strong correlations. Spin-ARPES faces severe experimental challenges compared to conventional ARPES attributed to the dramatically lower efficiency of its detection mechanism, making it crucial for instrumentation developments that improve the overall performance of the technique. In this paper, we demonstrate the functionality of our spin-ARPES setup based on time-of-flight spectroscopy and introduce our recent development of an electrostatic deflector mode to map out spin-resolved band structures without sample rotation. We demonstrate the functionality by presenting the spin-resolved spectra of the topological insulator Bi2Te3 and describe in detail the spectrum calibrations based on numerical simulations. By implementing the deflector mode, we minimize the need for sample rotation during measurements, hence improving the overall efficiency of experiments on small or inhomogeneous samples.

9.
Chem Mater ; 35(17): 7239-7251, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37719035

RESUMO

Magnetic materials with noncollinear spin textures are promising for spintronic applications. To realize practical devices, control over the length and energy scales of such spin textures is imperative. The chiral helimagnets Cr1/3NbS2 and Cr1/3TaS2 exhibit analogous magnetic-phase diagrams with different real-space periodicities and field dependence, positioning them as model systems for studying the relative strengths of the microscopic mechanisms giving rise to exotic spin textures. Although the electronic structure of the Nb analogue has been experimentally investigated, the Ta analogue has received far less attention. Here, we present a comprehensive suite of electronic structure studies on both Cr1/3NbS2 and Cr1/3TaS2 using angle-resolved photoemission spectroscopy and density functional theory. We show that bands in Cr1/3TaS2 are more dispersive than their counterparts in Cr1/3NbS2, resulting in markedly different Fermi wavevectors. The fact that their qualitative magnetic phase diagrams are nevertheless identical shows that hybridization between the intercalant and host lattice mediates the magnetic exchange interactions in both of these materials. We ultimately find that ferromagnetic coupling is stronger in Cr1/3TaS2, but larger spin-orbit coupling (and a stronger Dzyaloshinskii-Moriya interaction) from the heavier host lattice ultimately gives rise to shorter spin textures.

10.
Nat Commun ; 14(1): 5812, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726328

RESUMO

Magnetic topological semimetals allow for an effective control of the topological electronic states by tuning the spin configuration. Among them, Weyl nodal line semimetals are thought to have the greatest tunability, yet they are the least studied experimentally due to the scarcity of material candidates. Here, using a combination of angle-resolved photoemission spectroscopy and quantum oscillation measurements, together with density functional theory calculations, we identify the square-net compound EuGa4 as a magnetic Weyl nodal ring semimetal, in which the line nodes form closed rings near the Fermi level. The Weyl nodal ring states show distinct Landau quantization with clear spin splitting upon application of a magnetic field. At 2 K in a field of 14 T, the transverse magnetoresistance of EuGa4 exceeds 200,000%, which is more than two orders of magnitude larger than that of other known magnetic topological semimetals. Our theoretical model suggests that the non-saturating magnetoresistance up to 40 T arises as a consequence of the nodal ring state.

11.
Nano Lett ; 23(17): 8000-8005, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639696

RESUMO

We investigate the electronic properties of a graphene and α-ruthenium trichloride (α-RuCl3) heterostructure using a combination of experimental techniques. α-RuCl3 is a Mott insulator and a Kitaev material. Its combination with graphene has gained increasing attention due to its potential applicability in novel optoelectronic devices. By using a combination of spatially resolved photoemission spectroscopy and low-energy electron microscopy, we are able to provide a direct visualization of the massive charge transfer from graphene to α-RuCl3, which can modify the electronic properties of both materials, leading to novel electronic phenomena at their interface. A measurement of the spatially resolved work function allows for a direct estimate of the interface dipole between graphene and α-RuCl3. Their strong coupling could lead to new ways of manipulating electronic properties of a two-dimensional heterojunction. Understanding the electronic properties of this structure is pivotal for designing next generation low-power optoelectronics devices.

12.
Phys Rev Lett ; 131(2): 026701, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505968

RESUMO

In kagome metal CsV_{3}Sb_{5}, multiple intertwined orders are accompanied by both electronic and structural instabilities. These exotic orders have attracted much recent attention, but their origins remain elusive. The newly discovered CsTi_{3}Bi_{5} is a Ti-based kagome metal to parallel CsV_{3}Sb_{5}. Here, we report angle-resolved photoemission experiments and first-principles calculations on pristine and Cs-doped CsTi_{3}Bi_{5} samples. Our results reveal that the van Hove singularity (vHS) in CsTi_{3}Bi_{5} can be tuned in a large energy range without structural instability, different from that in CsV_{3}Sb_{5}. As such, CsTi_{3}Bi_{5} provides a complementary platform to disentangle and investigate the electronic instability with a tunable vHS in kagome metals.

13.
Nano Lett ; 23(15): 7107-7113, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506350

RESUMO

Systems with flat bands are ideal for studying strongly correlated electronic states and related phenomena. Among them, kagome-structured metals such as CoSn have been recognized as promising candidates due to the proximity between the flat bands and the Fermi level. A key next step will be to realize epitaxial kagome thin films with flat bands to enable tuning of the flat bands across the Fermi level via electrostatic gating or strain. Here, we report the band structures of epitaxial CoSn thin films grown directly on the insulating substrates. Flat bands are observed by using synchrotron-based angle-resolved photoemission spectroscopy (ARPES). The band structure is consistent with density functional theory (DFT) calculations, and the transport properties are quantitatively explained by the band structure and semiclassical transport theory. Our work paves the way to realize flat band-induced phenomena through fine-tuning of flat bands in kagome materials.

14.
Nano Lett ; 23(15): 6799-6806, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486984

RESUMO

Near the magic angle, strong correlations drive many intriguing phases in twisted bilayer graphene (tBG) including unconventional superconductivity and chern insulation. Whether correlations can tune symmetry breaking phases in tBG at intermediate (≳ 2°) twist angles remains an open fundamental question. Here, using ARPES, we study the effects of many-body interactions and displacement field on the band structure of tBG devices at an intermediate (3°) twist angle. We observe a layer- and doping-dependent renormalization of bands at the K points that is qualitatively consistent with moiré models of the Hartree-Fock interaction. We provide evidence of correlation-enhanced inversion symmetry-breaking, manifested by gaps at the Dirac points that are tunable with doping. These results suggest that electronic interactions play a significant role in the physics of tBG even at intermediate twist angles and present a new pathway toward engineering band structure and symmetry-breaking phases in moiré heterostructures.

15.
Nat Mater ; 22(2): 200-206, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36646794

RESUMO

Crystalline symmetries have played a central role in the identification and understanding of quantum materials. Here we investigate whether an amorphous analogue of a well known three-dimensional strong topological insulator has topological properties in the solid state. We show that amorphous Bi2Se3 thin films host a number of two-dimensional surface conduction channels. Our angle-resolved photoemission spectroscopy data are consistent with a dispersive two-dimensional surface state that crosses the bulk gap. Spin-resolved photoemission spectroscopy shows this state has an anti-symmetric spin texture, confirming the existence of spin-momentum locked surface states. We discuss these experimental results in light of theoretical photoemission spectra obtained with an amorphous topological insulator tight-binding model, contrasting it with alternative explanations. The discovery of spin-momentum locked surface states in amorphous materials opens a new avenue to characterize amorphous matter, and triggers the search for an overlooked subset of quantum materials outside of current classification schemes.

16.
Nat Mater ; 22(2): 186-193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36329264

RESUMO

In the kagome metals AV3Sb5 (A = K, Rb, Cs), three-dimensional charge order is the primary instability that sets the stage for other collective orders to emerge, including unidirectional stripe order, orbital flux order, electronic nematicity and superconductivity. Here, we use high-resolution angle-resolved photoemission spectroscopy to determine the microscopic structure of three-dimensional charge order in AV3Sb5 and its interplay with superconductivity. Our approach is based on identifying an unusual splitting of kagome bands induced by three-dimensional charge order, which provides a sensitive way to refine the spatial charge patterns in neighbouring kagome planes. We found a marked dependence of the three-dimensional charge order structure on composition and doping. The observed difference between CsV3Sb5 and the other compounds potentially underpins the double-dome superconductivity in CsV3(Sb,Sn)5 and the suppression of Tc in KV3Sb5 and RbV3Sb5. Our results provide fresh insights into the rich phase diagram of AV3Sb5.

17.
Adv Mater ; 35(3): e2205927, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36385535

RESUMO

Kagome magnets provide a fascinating platform for a plethora of topological quantum phenomena, in which the delicate interplay between frustrated crystal structure, magnetization, and spin-orbit coupling (SOC) can engender highly tunable topological states. Here, utilizing angle-resolved photoemission spectroscopy, the Weyl lines are directly visualized with strong out-of-plane dispersion in the A-A stacked kagome magnet GdMn6 Sn6 . Remarkably, the Weyl lines exhibit a strong magnetization-direction-tunable SOC gap and binding energy tunability after substituting Gd with Tb and Li, respectively. These results not only illustrate the magnetization direction and valence counting as efficient tuning knobs for realizing and controlling distinct 3D topological phases, but also demonstrate AMn6 Sn6 (A = rare earth, or Li, Mg, or Ca) as a versatile material family for exploring diverse emergent topological quantum responses.

18.
ACS Nano ; 16(11): 19354-19362, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36321616

RESUMO

Massive Dirac fermions are low-energy electronic excitations characterized by a hyperbolic band dispersion. They play a central role in several emerging physical phenomena such as topological phase transitions, anomalous Hall effects, and superconductivity. This work demonstrates that massive Dirac fermions can be controllably induced by lithographically patterning superstructures of nanoscale holes in a graphene device. Their band dispersion is systematically visualized using angle-resolved photoemission spectroscopy with nanoscale spatial resolution. A linear scaling of effective mass with feature sizes is reported, underlining the Dirac nature of the superstructures. In situ electrostatic doping dramatically enhances the effective hole mass and leads to the direct observation of an electronic band gap that results in a peak-to-peak band separation of 0.64 ± 0.03 eV, which is shown via first-principles calculations to be strongly renormalized by carrier-induced screening. The methodology demonstrates band structure engineering guided by directly viewing structurally and electrically tunable massive Dirac quasiparticles in lithographic superstructures at the nanoscale.

19.
Nature ; 609(7927): 490-495, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104552

RESUMO

A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies1,2. A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity1,2. Recently, such rich phase diagrams have also been shown in correlated topological materials. In 2D kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons3,4, non-trivial topology5-7, chiral magnetic order8,9, superconductivity and CDW order10-15. Although CDW has been found in weakly electron-correlated non-magnetic AV3Sb5 (A = K, Rb, Cs)10-15, it has not yet been observed in correlated magnetic-ordered kagome lattice metals4,16-21. Here we report the discovery of CDW in the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe (refs. 16-19). The CDW in FeGe occurs at wavevectors identical to that of AV3Sb5 (refs. 10-15), enhances the AFM ordered moment and induces an emergent anomalous Hall effect22,23. Our findings suggest that CDW in FeGe arises from the combination of electron-correlations-driven AFM order and van Hove singularities (vHSs)-driven instability possibly associated with a chiral flux phase24-28, in stark contrast to strongly correlated copper oxides1,2 and nickelates29-31, in which the CDW precedes or accompanies the magnetic order.

20.
ACS Nano ; 16(7): 11227-11233, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35838605

RESUMO

NiTe2, a type-II Dirac semimetal with a strongly tilted Dirac band, has been explored extensively to understand its intriguing topological properties. Here, using density functional theory calculations, we report that the strength of the spin-orbit coupling (SOC) in NiTe2 can be tuned by Se substitution. This results in negative shifts of the bulk Dirac point (BDP) while preserving the type-II Dirac band. Indeed, combined studies using scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy confirm that the BDP in the NiTe2-xSex alloy moves from +0.1 eV (NiTe2) to -0.3 eV (NiTeSe) depending on the Se concentrations, indicating the effective tunability of type-II Dirac Fermions. Our results demonstrate an approach to tailor the type-II Dirac band in NiTe2 by controlling the SOC strength via chalcogen substitution. This approach can be applicable to different types of topological materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...