Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 11(18): e2200745, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35734914

RESUMO

Next generation textile-based wearable sensing systems will require flexibility and strength to maintain capabilities over a wide range of deformations. However, current material sets used for textile-based skin contacting electrodes lack these key properties, which hinder applications such as electrophysiological sensing. In this work, a facile spray coating approach to integrate liquid metal nanoparticle systems into textile form factors for conformal, flexible, and robust electrodes is presented. The liquid metal system employs functionalized liquid metal nanoparticles that provide a simple "peel-off to activate" means of imparting conductivity. The spray coating approach combined with the functionalized liquid metal system enables the creation of long-term reusable textile-integrated liquid metal electrodes (TILEs). Although the TILEs are dry electrodes by nature, they show equal skin-electrode impedances and sensing capabilities with improved wearability compared to commercial wet electrodes. Biocompatibility of TILEs in an in vivo skin environment is demonstrated, while providing improved sensing performance compared to previously reported textile-based dry electrodes. The "spray on dry-behave like wet" characteristics of TILEs opens opportunities for textile-based wearable health monitoring, haptics, and augmented/virtual reality applications that require the use of flexible and conformable dry electrodes.


Assuntos
Metais , Têxteis , Condutividade Elétrica , Impedância Elétrica , Eletrodos
2.
Adv Healthc Mater ; 10(20): e2100893, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34212513

RESUMO

Pressure sensors for wearable healthcare devices, particularly force sensitive resistors (FSRs) are widely used to monitor physiological signals and human motions. However, current FSRs are not suitable for integration into wearable platforms. This work presents a novel technique for developing textile FSRs (TFSRs) using a combination of inkjet printing of metal-organic decomposition silver inks and heat pressing for facile integration into textiles. The insulating void by a thermoplastic polyurethane (TPU) membrane between the top and bottom textile electrodes creates an architectured piezoresistive structure. The structure functions as a simple logic switch where under a threshold pressure the electrodes make contact to create conductive paths (on-state) and without pressure return to the prior insulated condition (off-state). The TFSR can be controlled by arranging the number of layers and hole diameters of the TPU spacer to specify a wide range of activation pressures from 4.9 kPa to 7.1 MPa. For a use-case scenario in wearable healthcare technologies, the TFSR connected with a readout circuit and a mobile app shows highly stable signal acquisition from finger movement. According to the on/off state of the TFSR with LED bulbs by different weights, it can be utilized as a textile switch showing tactile feedback.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Atenção à Saúde , Condutividade Elétrica , Eletrodos , Humanos
3.
ACS Appl Mater Interfaces ; 13(20): 24081-24094, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988966

RESUMO

Soft printed electronics exhibit unique structures and flexibilities suited for a plethora of wearable applications. However, forming scalable, reliable multilayered electronic devices with heterogeneous material interfaces on soft substrates, especially on porous and anisotropic structures, is highly challenging. In this study, we demonstrate an all-inkjet-printed textile capacitor using a multilayered structure of bilayer polymer dielectrics and particle-free metal-organic decomposition (MOD) silver electrodes. Understanding the inherent porous/anisotropic microstructure of textiles and their surface energy relationship was an important process step for successful planarization. The MOD silver ink formed a foundational conductive layer through the uniform encapsulation of individual fibers without blocking fiber interstices. Urethane-acrylate and poly(4-vinylphenol)-based bilayers were able to form a planarized dielectric layer on polyethylene terephthalate textiles. A unique chemical interaction at the interfaces of bilayer dielectrics performed a significant role in insulating porous textile substrates resulting in high chemical and mechanical durability. In this work, we demonstrate how textiles' unique microstructures and bilayer dielectric layer designs benefit reliability and scalability in the inkjet process as well as the use in wearable electronics with electromechanical performance.

4.
RSC Adv ; 8(50): 28825-28835, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35548396

RESUMO

Smart textiles have been enormously developed recently, but attachment of batteries and low washing resistance are the major challenges in the development of wearable smart textiles. However, piezoelectric materials harvesting energy from mechanical action can be readily integrated with smart textiles and can replace conventional batteries. Therefore, energy harvesters with poly(vinylidene fluoride) (PVDF) were fabricated by the electrospinning process. In addition, simple CF4 plasma etching followed by water immersion of the electrospun PVDF webs resulted in superhydrophobicity, with a water contact angle of 169.8 ± 1.5°, a water shedding angle of 4.7 ± 1.8°, and self-cleaning properties. This would decrease the number of washing cycles during use and increase the durability of the smart textile. X-ray photoelectron spectroscopy indicated that metals were co-deposited as etch-resisting masks to fabricate a nanostructure during plasma etching and were removed by water immersion. The piezoelectric performance of the superhydrophobic electrospun PVDF web showed a higher peak-to-peak output voltage of 3.50 V than the untreated electrospun PVDF web (2.86 V). Furthermore, the breathability of the superhydrophobic PVDF web was remarkably higher than those of the PVDF film. Therefore, the new flexible electrospun PVDF web with superhydrophobicity and piezoelectricity has significant potential as energy harvesters in wearable smart textiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA