Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38743438

RESUMO

We selectively improved the viewing angle characteristics and light extraction efficiency of blue thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) by tailoring a nanofiber-shaped Si3N4 layer, which was used as an internal scattering layer. The diameter of the polymer nanofibers changed according to the mass ratio of polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) in the polymer solution for electrospinning. The Si3N4 nanofiber (SNF) structure was fabricated by etching an Si3N4 film using the PAN/PMMA nanofiber as a mask, making it easier to adjust parameters, such as the diameter, open ratio, and height, even though the SNF structure was randomly shaped. The SNF structures exhibited lower transmittance and higher haze with increasing diameter, showing little correlation with their height. However, all the structures demonstrated a total transmittance of over 80%. Finally, by applying the SNF structures to the blue TADF OLEDs, the external quantum efficiency was increased by 15.6%. In addition, the current and power efficiencies were enhanced by 23.0% and 25.6%, respectively. The internal light-extracting SNF structure also exhibited a synergistic effect with the external light-extracting structure. Furthermore, when the viewing angle changed from 0° to 60°, the peak wavelength and CIE coordinate shift decreased from 20 to 6 nm and from 0.0561 to 0.0243, respectively. These trends were explained by the application of Snell's law to the light path and were ultimately validated through finite-difference time-domain simulations.

2.
Micromachines (Basel) ; 15(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38542575

RESUMO

Luminous efficiency is a pivotal factor for assessing the performance of optoelectronic devices, wherein light loss caused by diverse factors is harvested and converted into the radiative mode. In this study, we demonstrate a nanoscale vacuum photonic crystal layer (nVPCL) for light extraction enhancement. A corrugated semi-transparent electrode incorporating a periodic hollow-structure array was designed through a simulation that utilizes finite-difference time-domain computational analysis. The corrugated profile, stemming from the periodic hollow structure, was fabricated using laser interference lithography, which allows the precise engineering of various geometrical parameters by controlling the process conditions. The semi-transparent electrode consisted of a 15 nm thick Ag film, which acted as the exit mirror and induced microcavity resonance. When applied to a conventional green organic light-emitting diode (OLED) structure, the optimized nVPCL-integrated device demonstrated a 21.5% enhancement in external quantum efficiency compared to the reference device. Further, the full width at half maximum exhibited a 27.5% reduction compared to that of the reference device, demonstrating improved color purity. This study presents a novel approach by applying a hybrid thin film electrode design to optoelectronic devices to enhance optical efficiency and color purity.

3.
ACS Appl Mater Interfaces ; 16(6): 7130-7140, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315977

RESUMO

Colloidal PbS quantum-dot solar cells (QDSCs) have long suffered from inefficient charge collection near the back-junction due to the lack of p-doping strategy, rendering their bifacial photovoltaic applications unsuccessful. Here, we report highly efficient photocarrier collection in bifacial colloidal PbS QDSCs by exploiting spray-coated silver nanowires (AgNWs) top electrodes. During our spray-coating process, pressurized Ag diffusion occurred toward the active layer, which induced effective p-doping and deep-level passivation. By manipulating the spray pressure, optimum AgNWs' stacking morphology enabling an appropriate level of Ag diffusion could be achieved, leading to Jsc over 30 mA/cm2 from the conventional n-i-p structure upon light illumination to the film side. The morphological and electrical behaviors of AgNWs according to the spray pressure are comprehensively explained in relation to the device performance. Finally, 50 bifacial cells were fabricated over 49 cm2 sized glass substrate, demonstrating the large-area processability and functionality of the spray-coated AgNWs with the effective back-junction engineering.

4.
Sensors (Basel) ; 23(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687934

RESUMO

Recently, the application of cobalt iron boron (CoFeB) thin films in magnetic sensors has been widely studied owing to their high magnetic moment, anisotropy, and stability. However, most of these studies were conducted on rigid silicon substrates. For diverse applications of magnetic and angle sensors, it is important to explore the properties of ferromagnetic thin films grown on nonrigid deformable substrates. In this study, representative deformable substrates (polyimide (PI), polyethylene naphthalate (PEN), and polydimethylsiloxane (PDMS)), which can be bent or stretched, were used to assess the in-plane magnetic field angle-dependent properties of amorphous Ta/CoFeB/MgO/Ta thin films grown on deformable substrates. The effects of substrate roughness, tensile stress, deformable substrate characteristics, and sputtering on magnetic properties, such as the coercive field (Hc), remanence over saturation magnetization (Mr/Ms), and biaxial characteristics, were investigated. This study presents an unconventional foundation for exploring deformable magnetic sensors capable of detecting magnetic field angles.

5.
Nanomaterials (Basel) ; 13(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37630941

RESUMO

In this study, various diffusers are applied to highly efficient ultra-thin emission layer (EML) structure-based blue phosphorescent organic light-emitting diodes (PHOLEDs) to improve the electroluminescence (EL) characteristics and viewing angle. To achieve highly efficient blue PHOLEDs, the EL characteristics of ultra-thin EML PHOLEDs with the various diffusers having different structures of pattern-shape (hemisphere/sphere), size (4~75 µm), distribution (surface/embedded), and packing (close-packed/random) were systematically analyzed. The diffusers showed different enhancements in the overall EL characteristics of efficiencies, viewing angle, and others. The EL characteristics showed apparent dependency on their structure. The external quantum efficiency (EQE) was enhanced mainly by following the orders of pattern, size, and shape. Following the pattern size, the EQE enhancement gradually increased; the largest-sized diffuser with a 75 µm closed-packed hemisphere (diffuser-1) showed a 1.47-fold EQE improvement, which was the highest. Meanwhile, the diffuser with a ~7 µm random embedded sphere with a low density (diffuser 5) showed the lowest 1.02-fold-improved EQE. The reference device with ultra-thin EML structure-based blue PHOLEDs showed a maximum EQE of 16.6%, and the device with diffuser 1 achieved a maximum EQE of 24.3% with a 5.1% wider viewing angle compared to the reference device without a diffuser. For the in-depth analysis, the viewing angle profile of the ultra-thin EML PHOLED device and fluorescent green OLEDs were compared. As a result, the efficiency enhancement characteristics of the diffusers show a difference in the viewing angle profile. Finally, the application of the diffuser successfully demonstrated that the EL efficiency and viewing angle could be selectively improved. Additionally, we found that it was possible to realize a wide viewing angle and achieve considerable EQE enhancement by further investigations using high-density and large-sized embedded structures of light-extraction film.

6.
Nanomaterials (Basel) ; 13(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630950

RESUMO

We report the electroluminescence (EL) characteristics of blue ultra-thin emissive layer (U-EML) phosphorescent (PH) organic light-emitting diodes (OLED) and thermally activated delayed fluorescence (TADF) OLED. A variety of transport layer (TL) materials were used in the fabricated OLEDs. The well-known FIrpic and DMAC-DPS were used with a thickness of 0.3 nm, which is relatively thicker than the optimal thickness (0.15 nm) of the blue phosphorescent ultra-thin emissive layer to ensure sufficient energy transfer. While FIrpic showed overall high efficiency in various TLs, DMAC-DPS exhibited three times lower efficiency in limited TLs. To clarify/identify low efficiency and to improve the EL, the thickness of DMAC-DPS was varied. A significantly higher and comparable efficiency was observed with a thickness of 4.5 nm, which is 15 times thicker. This thickness was oriented from the TADF itself, which reduces quenching in a triplet-triplet annihilation compared to the PH process. The thinner optimal thickness compared with ~30 nm of fluorescent OLEDs suggests that there still is quenching taking place. We expect that the efficiency of TADF U-EML OLEDs can be enhanced through further research on controlling the exciton quenching using multiple U-EMLs with spacers and a novel material with a high energy transfer rate (ΔES-T).

7.
Nanomaterials (Basel) ; 13(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570534

RESUMO

In this study, we demonstrated organic light-emitting diodes (OLEDs) outcoupling with a flexible polydimethylsiloxane (PDMS) film with a micro-convex structure using the breath figure (BF) method. We can easily control the micro-convex pattern by adjusting the concentration of polystyrene and the humidity during the BF process. As process conditions to fabricate the micro-convex structure, polymer concentrations of 10, 20, 40, and 80 mg/mL and 60, 70, and 80% relative humidity were used. To evaluate the optical properties, we analyzed the transmission, diffusion, and electroluminescence with or without the micro-convex structure on the OLEDs. The shape and density of the micro-convex structure are related to its optical properties and outcoupling and we have experimentally demonstrated this. By applying a micro-convex structure, it achieved up to a 42% improvement in the external quantum efficiency compared to bare OLEDs (without any light extraction film). We expect the fabricated flexible light extraction film to be effective for outcoupling and applicable to flexible devices.

8.
Nanomaterials (Basel) ; 13(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570570

RESUMO

This study investigates the application of scattering structures to the metal layer in a DMD (Dielectric/Metal/Dielectric) configuration through plasma treatment. The purpose is to enhance the light extraction efficiency of organic light-emitting diodes (OLEDs). Different plasma conditions were explored to create scattering structures on the metal layer. The fabricated devices were characterized for their electrical and optical properties. The results demonstrate that the introduction of scattering structures through plasma treatment effectively improves the light extraction efficiency of OLEDs. Specifically, using O2-plasma treatment on the metal layer resulted in significant enhancements in the total transmittance, haze, and figure of merit. These findings suggest that incorporating scattering structures within the DMD configuration can effectively promote light extraction in OLEDs, leading to enhanced overall performance and light efficiency.

9.
Discov Nano ; 18(1): 80, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37382714

RESUMO

Two-dimensional (2D) materials are highly sought after for their superior semiconducting properties, making them promising candidates for next-generation electronic and optoelectronic devices. Transition-metal dichalcogenides (TMDCs), such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), are promising alternative 2D materials. However, the devices based on these materials experience performance deterioration due to the formation of a Schottky barrier between metal contacts and semiconducting TMDCs. Here, we performed experiments to reduce the Schottky barrier height of MoS2 field-effect transistors (FETs) by lowering the work function (Фm = Evacuum - EF,metal) of the contact metal. We chose polyethylenimine (PEI), a polymer containing simple aliphatic amine groups (-NH2), as a surface modifier of the Au (ФAu = 5.10 eV) contact metal. PEI is a well-known surface modifier that lowers the work function of various conductors such as metals and conducting polymers. Such surface modifiers have thus far been utilized in organic-based devices, including organic light-emitting diodes, organic solar cells, and organic thin-film transistors. In this study, we used the simple PEI coating to tune the work function of the contact electrodes of MoS2 FETs. The proposed method is rapid, easy to implement under ambient conditions, and effectively reduces the Schottky barrier height. We expect this simple and effective method to be widely used in large-area electronics and optoelectronics due to its numerous advantages.

10.
Materials (Basel) ; 16(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984418

RESUMO

Ladder-type polysilsesquioxanes (LPSQs) containing phenyl as a high refractive index unit and cyclic epoxy as a curable unit were found to be excellent candidates for a transparent color conversion layer for displays due to being miscible with organic solvents and amenable to transparent film formation. Therefore, the LPSQs were combined with luminescent lanthanide metals, europium Eu(III), and terbium Tb(III), to fabricate transparent films with various emission colors, including red, orange, yellow, and green. The high luminescence and transmittance properties of the LPSQs-lanthanide composite films after thermal curing were attributed to chelating properties of hydroxyl and polyether side chains of LPSQs to lanthanide ions, as well as a light sensitizing effect of phenyl side chains of the LPSQs. Furthermore, Fourier-transform infrared (FT-IR) and X-ray photoelectron spectroscopy and nanoindentation tests indicated that the addition of the nanoparticles to the LPSQs moderately enhanced the epoxy conversion rate and substantially improved the wear resistance, including hardness, adhesion, and insusceptibility to atmospheric corrosion in a saline environment. Thus, the achieved LPGSG-lanthanide hybrid organic-inorganic material could effectively serve as a color conversion layer for displays.

11.
Opt Express ; 30(11): 19839-19854, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221750

RESUMO

This paper investigates the submicron scale color filter design in the high-definition computer-generated hologram (HD-CGH). It is addressed that single pixel structural coloration is essential for full-color wide-viewing angle HD-CGH because the conventional RGB color stripe filter degrades HD-CGH image quality due to low misalignment tolerance. Considering that a submicron scale slit or hole with metallic mirror sidewalls can operate as a single pixel color filter. We propose a design of single pixel RGB plasmonic color filter (PCF) and present the feasibility of applying the proposed single pixel RGB PCF to high-definition HD-CGHs. Based on the RGB PCF platform, a 1.1 µm × 1.1 µm RGB PCF is designed and the corresponding optical characteristics of the full-color HD-CGH are analyzed.

12.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35564139

RESUMO

In this study, we fabricated a random nanostructure (RNS) external light extraction composite layer containing high-refractive-index nanoparticles through a simple and inexpensive solution process and a low-temperature mask-free process. We focused on varying the shape and density of the RNSs and adjusted the concentration of the high-refractive-index nanoparticles to control the optical properties. The RNSs fabricated using a low-temperature mask-free process can use the distance between the nanostructures and various forms to control the diffraction and scattering effects in the visible light wavelength range. Consequently, our film exhibited a direct transmittance of ~85% at a wavelength of 550 nm. Furthermore, when the RNSs' composite film, manufactured using the low-temperature mask-free process, was applied to organic light-emitting diodes (OLEDs), it exhibited an external quantum efficiency improvement of 32.2% compared with the OLEDs without the RNSs. Therefore, the randomly distributed high-refractive-index nanoparticles on the polymer film can reduce the waveguide mode and total reflection at the substrate/air interface. These films can be used as a scattering layer to reduce the loss of the OLED substrate mode.

13.
Nanomaterials (Basel) ; 12(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35564320

RESUMO

We implemented ultra-high resolution patterns of 2822 pixels-per-inch (PPI) via an inkjet printing and vacuum drying process grafted onto a sublimation transfer process. Co-solvented ink with a 1:1 ratio of N,N-dimethylformamide (DMF) to ortho-dichlrorobenzene (oDCB) was used, and the inkjet driving waveform was optimized via analysis of Ohnesorge (Oh)-Reynolds (Re) numbers. Inkjet printing conditions on the donor substrate with 2822 PPI microchannels were investigated in detail according to the drop space and line space. Most sublimation transferred patterns have porous surfaces under drying conditions in an air atmosphere. Unlike the spin-coating process, the drying process of inkjet-printed films on the microchannel has a great effect on the sublimation of transferred thin film. Therefore, to control the morphology, we carefully investigated the drying process of the inkjet-printed inks in the microchannel. Using a vacuum drying process to control the morphology of inkjet-printed films, line patterns of 2822 PPI resolution having a root-mean-square (RMS) roughness of 1.331 nm without voids were successfully fabricated.

14.
Sci Rep ; 12(1): 8277, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585248

RESUMO

Complex spatial light modulator (SLM), which can simultaneously control the amplitude and phase of light waves, is a key technology for wide-range of wave-optic technologies including holographic three-dimensional displays. This paper presents a flat panel complex spatial light modulator that consists of dual in-plane switching liquid crystal panels with double-degrees of freedom of voltage inputs. The proposed architecture features single-pixel level complex light modulation enabling complex light modulation in entire free space, which is most contrast to conventional macro-pixel based complex modulation techniques. Its complex light modulation capability is verified with theoretical simulation and experimental characterization, and a three-dimensional holographic image reconstruction without conjugate noise. It is believed that the proposed flat panel complex SLM can be an essential device for a wide range of advanced wave optic technologies.

15.
Nanomaterials (Basel) ; 12(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35457971

RESUMO

In this study, an external light extraction layer with a micro-nano hybrid structure was applied to improve the external light extraction efficiency of organic light-emitting diodes (OLEDs). A reactive ion-etching (RIE) process, using O2 and CHF3 plasma, was performed on the surface of the micro-scale pattern to form micro-nano hybrid structures. According to the results of this study, the nanostructures formed by the treatment of O2 and CHF3 were different, and the efficiency according to the structures was analyzed experimentally and theoretically. As a result, the OLED, to which the micro-nano hybrid structure, manufactured through a simple process, is applied, improved the external light extraction efficiency by up to 38%, and an extended viewing angle profile was obtained. Additionally, an effective method for enhancing the out-coupling efficiency of OLEDs was presented by optimizing the micro-nano hybrid structure according to process conditions.

16.
Opt Express ; 30(3): 3516-3523, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209607

RESUMO

We report a mode-locked Alexandrite single pulse laser with cavity dumping. Mode locking was achieved by using an AOM and an EOM was used for Q-switching and cavity dumping. The instability of the single pulse laser energy output was reduced down to a tenth of that of the conventional single trigger system by introducing a novel double trigger system. The single pulse laser energy and pulse width were 100 mJ and 475 ps in multiple mode and 12.5 mJ and 275 ps in single mode, obtained without a laser amplifier.

17.
Sci Rep ; 12(1): 1572, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091581

RESUMO

In this study, we introduce a flexible metal grid transparent electrode fabricated using a lift-off process. This transparent electrode consisting of metal thin film with punched-like pattern by hole array was fabricated with 8 um separations. The separation of inkjet-printed etching resistant ink droplets was controlled in order to investigate the relationship between its electrical and optical properties of the electrodes. The aluminum areal density was defined to predict the electrical and optical properties of different arrays. A high and uniform transmittance spectrum appears to extend broadly into the UV region. The figure of merit of the transparent electrode was investigated in order to determine its performance as a transparent electrode. Moreover, there was no significant change in the resistance after 7000 bending cycles, indicating that the array conductor had superior stability. We also demonstrate transparent touch screen panels fabricated using the transparent electrode.

18.
ACS Nano ; 15(11): 17917-17925, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34677045

RESUMO

Polarization-sensitive photodetection has attracted considerable attention as an emerging technology for future optoelectronic applications such as three-dimensional (3D) imaging, quantum optics, and encryption. However, traditional photodetectors based on Si or III-V InGaAs semiconductors cannot directly detect polarized light without additional optical components. Herein, we demonstrate a self-powered linear-polarization-sensitive near-infrared (NIR) photodetector using a two-dimensional WSe2/ReSe2 van der Waals heterostructure. The WSe2/ReSe2 heterojunction photodiode with semivertical geometry exhibits excellent performance: an ideality factor of 1.67, a broad spectral photoresponse of 405-980 nm with a significant photovoltaic effect, outstanding linearity with a linear dynamic range wider than 100 dB, and rapid photoswitching behavior with a cutoff frequency up to 100 kHz. Strongly polarized excitonic transitions around the band edge in ReSe2 lead to significant 980 nm NIR linear-polarization-dependent photocurrent. This linear polarization sensitivity remains stable even after exposure to air for longer than five months. Furthermore, by leveraging the NIR (980 nm)-selective linear polarization detection of this photodiode under photovoltaic operation, we demonstrate digital incoherent holographic 3D imaging.

19.
Sci Rep ; 11(1): 10499, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006933

RESUMO

The need for photodetectors in various fields has gradually emerged, and several studies in this area are therefore being conducted. For photodetectors to be used in various environments, their transparency, flexibility, and durability must be ensured. However, the development of flexible photodetectors based on the current measurement techniques of conventional photodetectors has been difficult owing to the limitations of semiconductor materials. In this study, a new type of flexible and transparent capacitive photodetector was fabricated to address the shortcomings of conventional photodetectors. In addition, by introducing graphene electrodes to a new type of manufactured photodetector, devices with excellent overall chemical, thermal, and mechanical durability have been developed. Compared to photodetectors based on pristine Ag nanowire (AgNW) electrodes, AgNW/graphene hybrid electrode-based photodetectors exhibit a 20% higher photosensitivity. Also, the hybrid AgNW/graphene electrode on the dielectric layer exhibited low sheet resistance (~ 8 Ω/sq) and relatively high transmittance (~ 45%).

20.
Sci Rep ; 11(1): 8436, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875674

RESUMO

In this study, we report highly efficient green phosphorescent organic light-emitting diodes (OLEDs) with ultra-thin emission layers (EMLs). We use tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3), a green phosphorescent dopant, for creating the OLEDs. Under systematic analysis, the peak external quantum efficiency (EQE) of an optimized device based on the ultra-thin EML structure is found to be approximately 24%. This result is highest EQE among ultra-thin EML OLEDs and comparable to the highest efficiency achieved by OLEDs using Ir(ppy)3 that are fabricated via conventional doping methods. Moreover, this result shows that OLEDs with ultra-thin EML structures can achieve ultra-high efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...