Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Mol Ther Oncol ; 32(1): 200769, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596306

RESUMO

Despite the recent advancement in diagnosis and therapy, pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is still the most lethal cancer with a low five-year survival rate. There is an urgent need to develop new therapies to address this issue. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, miR-15a and miR-194, with the chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics, Gem-miR-15a and Gem-miR-194, respectively. In a panel of PDAC cell lines, we found that Gem-miR-15a and Gem-miR-194 induce cell-cycle arrest and apoptosis, and these mimics are potent inhibitors with IC50 values up to several hundred fold less than their native counterparts or Gem alone. Furthermore, we found that Gem-miR-15a and Gem-miR-194 retained miRNA function by downregulating the expression of several key targets including WEE1, CHK1, BMI1, and YAP1 for Gem-miR-15a, and FOXA1 for Gem-miR-194. We also found that our Gem-modified miRNA mimics exhibit an enhanced efficacy compared to Gem in patient-derived PDAC organoids. Furthermore, we observed that Gem-miR-15a significantly inhibits PDAC tumor growth in vivo without observing any noticeable signs of toxicity. Overall, our results demonstrate the therapeutic potential of Gem-modified miRNAs as a treatment strategy for PDAC.

3.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139352

RESUMO

The alarmingly low five-year survival rate for pancreatic cancer presents a global health challenge, contributing to about 7% of all cancer-related deaths. Late-stage diagnosis and high heterogeneity are the biggest hurdles in treating pancreatic cancer. Thus, there is a pressing need to discover novel biomarkers that could help in early detection as well as improve therapeutic strategies. MicroRNAs (miRNAs), a class of short non-coding RNA, have emerged as promising candidates with regard to both diagnostics and therapeutics. Dysregulated miRNAs play pivotal roles in accelerating tumor growth and metastasis, orchestrating tumor microenvironment, and conferring chemoresistance in pancreatic cancer. The differential expression profiles of miRNAs in pancreatic cancer could be utilized to explore novel therapeutic strategies. In this review, we also covered studies on recent advancements in various miRNA-based therapeutics such as restoring miRNAs with a tumor-suppressive function, suppressing miRNA with an oncogenic function, and combination with chemotherapeutic drugs. Despite several challenges in terms of specificity and targeted delivery, miRNA-based therapies hold the potential to revolutionize the treatment of pancreatic cancer by simultaneously targeting multiple signaling pathways.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Biomarcadores Tumorais/genética , Transdução de Sinais/genética , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica
4.
Methods Mol Biol ; 2712: 223-232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37578710

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that are involved in a wide range of biological processes, including development, differentiation, and disease. They function by binding to the 3' untranslated region (UTR) of target mRNAs, leading to mRNA degradation or translational repression. miRNAs are involved in the regulation of many cellular processes, including cell proliferation, apoptosis, and metabolism. MiRNAs have been shown to modulate ferroptosis in several ways. Some miRNAs have been shown to promote ferroptosis by increasing the expression of genes involved in lipid peroxidation. Other miRNAs have been shown to inhibit ferroptosis by decreasing the expression of genes involved in iron uptake. The role of miRNAs in ferroptosis is still being studied, but they play a significant role in this cell death pathway. miRNAs may be potential targets for therapeutic intervention in diseases associated with ferroptosis, such as cancer and neurodegenerative diseases. This chapter outlines several methods used to study the connection between miRNAs and ferroptosis through target discovery and validation.


Assuntos
Ferroptose , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Ferroptose/genética , RNA Mensageiro , Apoptose
5.
bioRxiv ; 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37645827

RESUMO

Pancreatic cancer, including its most common subtype, pancreatic adenocarcinoma (PDAC), has the lowest five-year survival rate among patients with pancreatic cancer in the United States. Despite advancements in anticancer treatment, the overall median survival for patients with PDAC has not dramatically improved. Therefore, there is an urgent need to develop new strategies of treatment to address this issue. Non-coding RNAs, including microRNAs (miRNAs), have been found to have major roles in carcinogenesis and the subsequent treatment of various cancer types like PDAC. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, hsa-miRNA-15a (miR-15a) and hsa-miRNA-194-1 (miR-194), with the nucleoside analog chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics of miR-15a (Gem-miR-15a) and miR-194 (Gem-miR-194). In a panel of PDAC cell lines, we found that Gem-miR-15a and Gem-miR-194 induce cell cycle arrest and apoptosis, and these mimics are potent inhibitors with IC 50 values up to several hundred fold less than their native counterparts or Gem alone. Furthermore, we found that Gem-miR-15a and Gem-miR-194 retained miRNA function by downregulating the expression of several key targets including WEE1, CHK1, BMI1, and YAP1 for Gem-miR-15a, and FOXA1 for Gem-miR-194. We also found that our Gem-modified miRNA mimics exhibit an enhanced efficacy compared to Gem alone in patient-derived PDAC organoids. Furthermore, we observed that Gem-miR-15a significantly inhibits PDAC tumor growth in vivo without observing any noticeable signs of toxicity. Overall, our results demonstrate the therapeutic potential of Gem-modified miRNAs as a treatment strategy for PDAC. One Sentence Summary: Yuen and Hwang et. al. have developed a potent therapeutic strategy for patients with pancreatic cancer by modifying microRNAs with gemcitabine.

6.
Mol Ther Oncolytics ; 28: 277-292, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36911069

RESUMO

Lung cancer is the leading cause of cancer-related deaths in the United States with non-small cell lung cancer (NSCLC) accounting for most cases. Despite advances in cancer therapeutics, the 5-year survival rate has remained poor due to several contributing factors, including its resistance to therapeutics. Therefore, there is a pressing need to develop therapeutics that can overcome resistance. Non-coding RNAs, including microRNAs (miRNAs), have been found to contribute to cancer resistance and therapeutics by modulating the expression of several targets involving multiple key mechanisms. In this study, we investigated the therapeutic potential of miR-129 modified with 5-fluorouracil (5-FU) in NSCLC. Our results show that 5-FU modified miR-129 (5-FU-miR-129) inhibits proliferation, induces apoptosis, and retains function as an miRNA in NSCLC cell lines A549 and Calu-1. Notably, we observed that 5-FU-miR-129 was able to overcome resistance to tyrosine kinase inhibitors and chemotherapy in cell lines resistant to erlotinib or 5-FU. Furthermore, we observed that the inhibitory effect of 5-FU-miR-129 can also be achieved in NSCLC cells under vehicle-free conditions. Finally, 5-FU-miR-129 inhibited NSCLC tumor growth and extended survival in vivo without toxic side effects. Altogether, our results demonstrate the potential of 5-FU-miR-129 as a highly potent cancer therapeutic in NSCLC.

7.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835366

RESUMO

Chronic pancreatitis is characterized by chronic inflammation and fibrosis, processes heightened by activated pancreatic stellate cells (PSCs). Recent publications have demonstrated that miR-15a, which targets YAP1 and BCL-2, is significantly downregulated in patients with chronic pancreatitis compared to healthy controls. We have utilized a miRNA modification strategy to enhance the therapeutic efficacy of miR-15a by replacing uracil with 5-fluorouracil (5-FU). We demonstrated increased levels of YAP1 and BCL-2 (both targets of miR-15a) in pancreatic tissues obtained from Ptf1aCreERTM and Ptf1aCreERTM;LSL-KrasG12D mice after chronic pancreatitis induction as compared to controls. In vitro studies showed that delivery of 5-FU-miR-15a significantly decreased viability, proliferation, and migration of PSCs over six days compared to 5-FU, TGFß1, control miR, and miR-15a. In addition, treatment of PSCs with 5-FU-miR-15a in the context of TGFß1 treatment exerted a more substantial effect than TGFß1 alone or when combined with other miRs. Conditioned medium obtained from PSC cells treated with 5-FU-miR-15a significantly inhibits the invasion of pancreatic cancer cells compared to controls. Importantly, we demonstrated that treatment with 5-FU-miR-15a reduced the levels of YAP1 and BCL-2 observed in PSCs. Our results strongly suggest that ectopic delivery of miR mimetics is a promising therapeutic approach for pancreatic fibrosis and that 5-FU-miR-15a shows specific promise.


Assuntos
Fluoruracila , MicroRNAs , Células Estreladas do Pâncreas , Pancreatite Crônica , Animais , Camundongos , Proliferação de Células/genética , Fibrose , Fluoruracila/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/patologia , Pancreatite Crônica/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Sinalização YAP/metabolismo
8.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674571

RESUMO

Pancreatitis (acute and chronic) is an inflammatory disease associated with significant morbidity, including a high rate of hospitalization and mortality. MicroRNAs (miRs) are essential post-transcriptional modulators of gene expression. They are crucial in many diseases' development and progression. Recent studies have demonstrated aberrant miRs expression patterns in pancreatic tissues obtained from patients experiencing acute and chronic pancreatitis compared to tissues from unaffected individuals. Increasing evidence showed that miRs regulate multiple aspects of pancreatic acinar biology, such as autophagy, mitophagy, and migration, impact local and systemic inflammation and, thus, are involved in the disease development and progression. Notably, multiple miRs act on pancreatic acinar cells and regulate the transduction of signals between pancreatic acinar cells, pancreatic stellate cells, and immune cells, and provide a complex interaction network between these cells. Importantly, recent studies from various animal models and patients' data combined with advanced detection techniques support their importance in diagnosing and treating pancreatitis. In this review, we plan to provide an up-to-date summary of the role of miRs in the development and progression of pancreatitis.


Assuntos
MicroRNAs , Pâncreas Exócrino , Pancreatite , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Pancreatite/genética , Pancreatite/metabolismo , Pâncreas/metabolismo , Pâncreas Exócrino/metabolismo , Células Acinares/metabolismo
9.
Cells ; 13(1)2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38201253

RESUMO

Chemoresistance and inefficient therapeutic efficacies in triple-negative breast cancers (TNBCs) are among the major clinical problems in breast cancers. A potential new method to sensitize these tumors to current treatment options is, therefore, urgent and necessary. Our previous studies demonstrated that miR-489 serves as one of the top tumor-suppressing miRs and features downregulated expression in metastatic TNBCs and that the restoration of miR-489 expression in TNBCs effectively inhibits the metastatic potentials of TNBCs both in vitro and in vivo. The chemical modification of miR-489 (CMM489) through the replacement of uracil with 5-FU further enhances the therapeutic potential of miR-489. In the present study, we tested the effects of CMM489 in synergizing DNA damage response (DDR) inhibitors such as PARP inhibitors. CMM489 is particularly effective in sensitizing TNBC cell lines with inherent resistance to PARP inhibitors regardless of BRCA mutation status. One of the anti-cancer mechanisms through which CMM489 synergizes with PARP inhibitors is the blockade of homologous recombination (HR) in TNBC cells upon DNA damage. The results of this study highlight the potential use of CMM489 in combination treatments with PARP inhibitors in TNBCs.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Poli(ADP-Ribose) Polimerases , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Proteína BRCA1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína BRCA2/genética , MicroRNAs/genética , Mutação/genética
11.
Mol Ther ; 30(11): 3450-3461, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35933584

RESUMO

MicroRNA (miRNAs) are pleiotropic post-transcriptional modulators of gene expression. Their inherently pleiotropic nature makes miRNAs strong candidates for the development of cancer therapeutics, yet despite their potential, there remains a challenge to deliver nucleic acid-based therapies into cancer cells. We developed a novel approach to modify miRNAs by replacing the uracil bases with 5-fluorouracil (5-FU) in the guide strand of tumor suppressor miRNAs, thereby combining the therapeutic effect of 5-FU with tumor-suppressive effect of miRNAs to create a potent, multi-targeted therapeutic molecule without altering its native RNAi function. To demonstrate the general applicability of this approach to other tumor-suppressive miRNAs, we screened a panel of 12 novel miRNA mimetics in several cancer types, including leukemia, breast, gastric, lung, and pancreatic cancer. Our results show that 5-FU-modified miRNA mimetics have increased potency (low nanomolar range) in inhibiting cancer cell proliferation and that these mimetics can be delivered into cancer cells without delivery vehicle both in vitro and in vivo, thus representing significant advancements in the development of therapeutic miRNAs for cancer. This work demonstrates the potential of fluoropyrimidine modifications that can be broadly applicable and may serve as a platform technology for future miRNA and nucleic acid-based therapeutics.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Genes Supressores de Tumor , Fluoruracila/farmacologia , Neoplasias Pancreáticas/genética , Interferência de RNA , Regulação Neoplásica da Expressão Gênica
13.
Front Oncol ; 11: 754834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660323

RESUMO

Long non-coding RNAs (lncRNAs) play important roles in various biological processes and human diseases, including cancer. In this study, we demonstrated a regulatory relationship between lncRNA GRIK1-AS1 and miR-375/IFIT2 axis in gastric cancer. Our results show a decreased expression of GRIK1-AS1 in gastric cancer tissues compared to adjacent normal gastric tissues. Gastric cell lines also have reduced levels of GRIK1-AS1 compared to gastric epithelial cell line GES-1. Ectopic expression of GRIK1-AS1 in gastric cancer cell lines significantly inhibits cellular viability, migration, and invasion. RNA-pull down and the luciferase activity assays show that GRIK1-AS1 mainly interacts specifically with miR-375. We further demonstrate a negatively regulatory relationship between lncRNA GRIK1-AS1 and miR-375. We discovered that IFIT2 was one of the direct key downstream target genes of miR-375, and established the important role of the GRIK1-AS1/miR-375/IFIT2 axis in the progression of gastric cancer. Taken together, our results revealed a novel mechanism of GRIK1-AS1 as a sponge to miR-375 that impacts gastric cancer progression via modulating target mRNA IFIT2 translation, and as a result, opens a new strategy to future GRIK1-AS1 based therapeutic development.

14.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562727

RESUMO

Resistance to cancer treatment is one of the major challenges currently faced when treating gastrointestinal (GI) cancers. A major contributing factor to this resistance is the presence of cancer stem cells (CSCs) in GI cancers (e.g., colorectal, pancreatic, gastric, liver cancer). Non-coding RNAs, such as microRNAs (miRNAs), have been found to regulate several key targets that are responsible for cancer stemness, and function as oncogenic miRNAs (oncomiRs) or tumor suppressor miRNAs. As a result, several miRNAs have been found to alter, or be altered by, the expression of CSC-defining markers and their related pathways. These miRNAs can be utilized to affect stemness in multiple ways, including directly targeting CSCs and enhancing the efficacy of cancer therapeutics. This review highlights current studies regarding the roles of miRNAs in GI CSCs, and efforts towards the development of cancer therapeutics.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Gastrointestinais/genética , MicroRNAs/genética , Células-Tronco Neoplásicas/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais
15.
Sci Rep ; 10(1): 14749, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901082

RESUMO

Gastric cancer is one of the leading causes of cancer-related death due to late diagnosis with high metastatic frequency. In this study, the impact of tumor secreted exosomes on immune function in the tumor environment was investigated using exosomes isolated from gastric cancer cell lines MKN-28, MKN-45, and SGC-7901. Results show that exosomes derived from all of these cell lines changed the gene expression and cytokine secretion levels of CD8+ T cells. They also block cell cycle progression, induced apoptosis in CD8+ T cells. Image analysis of fluorescent labeled exosomes derived from three cell lines injected systemically into C57BL/6 mice revealed these exosomes primarily localize to the lungs. We further showed exosomes were mainly taken up by natural killer cells and macrophages in the lung. After long-term exposure to inject exosomes from MKN-45 cells, mice developed an immunosuppressive tumor microenvironment in the lung with increased frequency of effector memory CD4+ T and MDSC, decreased CD8+ T cell and NK frequency. This immune suppressive environment promotes gastric cancer lung metastasis. Lung metastasis sites developed after mice were exposed to exosomes isolated from all three gastric cancer cell lines when the mice were injected with MFC cells. Results suggest that exosomes derived from gastric cancer cells (especially MKN-45 and MKN-28) changed CD8+ T cell gene expression and cytokine secretion patterns to create an immunosuppressive condition for metastatic niche formation in the lung. Overall, this study provides new insights into how gastric cancer derived exosomes modulate the immune response to promote lung tumor metastasis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Exossomos/metabolismo , Terapia de Imunossupressão , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Gástricas/imunologia , Microambiente Tumoral/imunologia , Animais , Apoptose , Proliferação de Células , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/terapia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancers (Basel) ; 12(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784600

RESUMO

Triple-negative breast cancers (TNBCs) lack ER, PR and her2 receptors that are targets of common breast cancer therapies with poor prognosis due to their high rates of metastasis and chemoresistance. Based on our previous studies that epigenetic silencing of a potential metastasis suppressor, arrestin domain-containing 3 (ARRDC3), is linked to the aggressive nature of TNBCs, we identified a sub-group of tumor suppressing miRNAs whose expressions were significantly up-regulated by ARRDC3 over-expression in TNBC cells. Among these tumor suppressing miRs, we found that miR-489 is most anti-proliferative in TNBC cells. miR-489 also blocked DNA damaging responses (DDRs) in TNBC cells. To define the mechanism by which miR-489 inhibits TNBC cell functions, we screened the potential target genes of miR-489 and identified MDC-1 and SUZ-12 as novel target genes of miR-489 in TNBC cells. To further exploit the therapeutic potentials of miR-489 in TNBC models, we chemically modified the guide strand of miR-489 (CMM489) by replacing Uracil with 5-fluorouracil (5-FU) so that tumor suppressor (miR-489) and DNA damaging (5-FU) components are combined into a single agent as a novel drug candidate for TNBCs. Our studies demonstrated that CMM489 shows superior effects over miR-489 or 5-FU in inhibition of TNBC cell proliferation and tumor progression, suggesting its therapeutic efficacy in TNBC models.

17.
Transl Cancer Res ; 9(9): 5360-5370, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35117901

RESUMO

BACKGROUND: B7-H7 is a newly identified member of the B7 immune checkpoint family, but has not been investigated in epithelial ovarian cancer (EOC). This study aimed to determine the B7-H7 expression profile and its potential clinical significance in EOC. METHODS: A tissue microarray (TMA) containing 160 ovarian cancer tissues was used in this study and 119 EOC cases were valid for analysis. B7-H7 expression was analyzed separately by multiplex immunohistochemistry (mIHC) staining in different compartment according to tissue segmentation. Correlations of B7-H7 expression and pathological characteristics, including overall survival (OS) and disease-free survival (DFS), were explored. RESULTS: Multiplex immunohistochemistry staining showed that B7-H7 was broadly expressed in EOC. B7-H7 expression was significantly higher in the tumor compartment than in stromal compartment of EOC. In EOC tissues, B7-H7 expression in tumor compartment was significantly associated with age (P<0.05); B7-H7 expression in stromal compartment was significantly associated with Federation of Obstetrics and Gynecology (FIGO) stage, lymph nodes metastasis, distant metastasis, and OS (all, P<0.05). The Kaplan-Meier survival analysis revealed that high B7-H7 expression in stromal compartment was significantly correlated with the poor OS of EOC patients (P<0.05), but B7-H7 expression in tumor compartment was not. CONCLUSIONS: Stromal B7-H7 expression is significantly associated with tumor progression and prognosis in EOC patients, which might be a prognostic predictor and a potential therapeutic target.

18.
Mol Ther Nucleic Acids ; 19: 228-239, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31846800

RESUMO

Treatment of pancreatic ductal adenocarcinoma (PDAC) remains a clinical challenge. There is an urgent need to develop novel strategies to enhance survival and improve patient prognosis. MicroRNAs (miRNAs) play critical roles as oncogenes or tumor suppressors in the regulation of cancer development and progression. In this study, we demonstrate that low expression of miR-15a is associated with poor prognosis of PDAC patients. miR-15a expression is reduced in PDAC while closely related miR-16 expression remains relatively unchanged. miR-15a suppresses several important targets such as Wee1, Chk1, Yap-1, and BMI-1, causing cell cycle arrest and inhibiting cell proliferation. Ectopic expression of miR-15a sensitizes PDAC cells to gemcitabine reducing the half maximal inhibitory concentration (IC50) more than 6.5-fold. To investigate the therapeutic potential of miR-15a, we used a modified miR-15a (5-FU-miR-15a) with uracil (U) residues in the guide strand replaced with 5-fluorouracil (5-FU). We demonstrated enhanced inhibition of PDAC cell proliferation by 5-FU-miR-15a compared to native miR-15a. In vivo we showed the therapeutic power of 5-FU-miR-15a alone or in combination with gemcitabine with near complete elimination of PDAC lung metastatic tumor growth. These results support the future development of 5-FU-miR-15a as a novel therapeutic agent as well as a prognostic biomarker in the clinical management of PDAC.

19.
Onco Targets Ther ; 12: 8139-8149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632065

RESUMO

BACKGROUND: IFIT2 (interferon-induced proteins with tetratricopeptide repeats 2), also known as ISG54, is an important interferon-stimulated gene family protein, which has been confirmed to play a crucial role in anti-cancer as well as anti-virus process. In the present study, we aimed to investigate the IFIT2 expression in human non-small-cell cancer (NSCLC) tissues and its clinical implications. METHODS: The immunohistochemistry assay was used to identify the clinical significance and prognostic value of IFIT2 expression in NSCLC tissues. The depletion of IFIT2 was achieved using RNAi approach to assess the role of IFIT2 in the regulation of biological behaviors in human lung cancer cell lines. RESULTS: Decreased IFIT2 expression was found in human NSCLC tissues (both in lung adenocarcinoma and lung squamous cell carcinoma) in contrast to the adjacent normal tissues (both P<0.0001, respectively). We did not find any significant correlations between the IFIT2 expression and patient's clinicopathological features. The survival analysis showed that the overall survival (OS) of patients in IFIT2 low expression group was significantly poorer than that in IFIT2 high expression group (in lung adenocarcinoma: P=0.027; and in lung squamous cell carcinoma: P=0.029). The Cox model analysis also indicated that the distant metastasis (P=0.043) could be used as an independent prognostic factor for lung adenocarcinoma patients, and the lymph node metastasis (P=0.045) and IFIT2 low expression (P=0.020) could be used as independent prognostic factors for lung squamous cell carcinoma patients. Moreover, the depletion of IFIT2 in human lung cancer cell lines A549, H1975 and SK-MES-1 significantly increased the cellular abilities, such as viability, migration and invasion. CONCLUSION: Decreased IFIT2 was involved in the initiation and the progression of human NSCLC, and its underlying mechanisms still needs further investigation.

20.
Cells ; 8(7)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295851

RESUMO

Our previous studies demonstrated the importance of arrestin domain containing 3 (ARRDC3), a metastasis suppressor, in inhibiting invasive and metastatic potential of triple negative breast cancer (TNBC) in vitro and in vivo. However, little is known about ARRDC3 mediated transcriptional control and its target genes that are implicated in its metastatic suppressing activity. In this study, we used miRNA array and subsequent functional analyses to identify miRNAs whose expression are significantly regulated by ARRDC3 in TNBC cells. We identified miR-200b as a major target gene of ARRDC3. miR-200b played an essential role in mediating ARRDC3 dependent reversal of EMT phenotypes and chemo-resistance to DNA damaging agents in TNBC cells. Expression of miR-200b also increased the expression of ARRDC3 as well in TNBC cells, suggesting a positive feedback loop between these two molecules. In addition, we combined the therapeutic powers of miR-200b and 5-fluorourancil (5-FU) into a single compound (5-FU-miR-200b) to maximize the synergistic effects of these compounds. Chemically modified miR-200b (5-FU-miR-200b mimic) was more effective in inhibiting metastatic potentials of TNBC cells than unmodified miR-200b and does not require transfection reagents, implying its therapeutic potential in TNBC. Our studies showed the importance of therapeutic targeting ARRDC3/miR-200b pathway in TNBC.


Assuntos
Arrestinas/metabolismo , MicroRNAs/biossíntese , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Arrestina/genética , Arrestina/metabolismo , Arrestinas/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Ativação Transcricional , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...