Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1067246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37823052

RESUMO

Accurate pathologic diagnosis and molecular classification of breast mass biopsy tissue is important for determining individualized therapy for (neo)adjuvant systemic therapies for invasive breast cancer. The CassiII rotational core biopsy system is a novel biopsy technique with a guide needle and a "stick-freeze" technology. The comprehensive assessments including the concordance rates of diagnosis and biomarker status between CassiII and core needle biopsy were evaluated in this study. Estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and Ki67 were analyzed through immunohistochemistry. In total, 655 patients with breast cancer who underwent surgery after biopsy at Sir Run Run Shaw Hospital between January 2019 to December 2021 were evaluated. The concordance rates (CRs) of malignant surgical specimens with CassiII needle biopsy was significantly high compared with core needle biopsy. Moreover, CassiII needle biopsy had about 20% improvement in sensitivity and about 5% improvement in positive predictive value compared to Core needle biopsy. The characteristics including age and tumor size were identified the risk factors for pathological inconsistencies with core needle biopsies. However, CassiII needle biopsy was associated with tumor diameter only. The CRs of ER, PgR, HER2, and Ki67 using Cassi needle were 98.08% (kappa, 0.941; p<.001), 90.77% (kappa, 0.812; p<.001), 69.62% (kappa, 0.482; p<.001), and 86.92% (kappa, 0.552; p<.001), respectively. Post-biopsy complications with CassiII needle biopsy were also collected. The complications of CassiII needle biopsy including chest stuffiness, pain and subcutaneous ecchymosis are not rare. The underlying mechanism of subcutaneous congestion or hematoma after CassiII needle biopsy might be the larger needle diameter and the effect of temperature on coagulation function. In summary, CassiII needle biopsy is age-independent and has a better accuracy than CNB for distinguishing carcinoma in situ and invasive carcinoma.

2.
Heliyon ; 9(9): e19803, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810030

RESUMO

Background: Cancer-associated fibroblasts (CAFs) constitute the primary constituents of the tumor microenvironment (TME) and exert significant influences on cancer progression. However, adequate comprehension of CAF profiles in breast cancer, as well as the precise mechanisms underlying their promotion of cancer, remains lacking. Objectives: To discerns the biological differences between normal fibroblasts (NFs) and CAFs in breast cancer and explore the underlying mechanism. Methods: Three pairs of CAFs and NFs were isolated from breast cancer patients of diverse subtypes who had not undergone prior radiotherapy or chemotherapy. Morphological characteristics of CAFs and NFs were assessed through optical and electron microscopy, their biological attributes were examined using cell counting kits and transwell assays, and their impact on breast cancer cells was simulated using a coculture system. Furthermore, the miRNA profiles of CAFs and NFs were sequenced via an Illumina HiSeq 2500 platform. Results: CAFs exhibited higher growth rate and motility than NFs and a stronger potential to promote the malignancy of breast cancer cells. RNA sequencing of both NFs and CAFs revealed differentially expressed miRNAs with notable variability among distinct patients within their NFs and CAFs, while the enrichment of the target genes of differentially expressed miRNAs within both GO terms and KEGG pathways demonstrated significant similarity across patients with different profiles. Conclusion: CAFs have greater malignancy and higher potential to influence the growth, migration, invasion and chemoresistance of cocultured breast cancer cells than NFs. In addition, the miRNAs that are differentially expressed in CAFs when compared to NFs display substantial variability across patients with distinct breast cancer subtypes, while the enrichment of target genes regulated by these miRNAs, within GO terms and KEGG pathways, remains remarkably consistent among patients with varying profiles.

3.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36543379

RESUMO

BACKGROUND: Triple-negative breast cancer is characterized by a poor prognosis and lack of targeted treatments, and thus, new targeting markers and therapeutic strategies are urgently needed. We previously indicated that PLAC8 promotes tumorigenesis and exerts multidrug resistance in breast cancer. Therefore, we aimed to characterize the PLAC8-regulated network in triple-negative breast cancer. METHODS: We measured the levels of PLAC8 in breast cancer cell lines and found that PLAC8 is post-translationally modified by ubiquitin-fold modifier 1 (UFM1). Then, we revealed a new regulatory system of PD-L1 by PLAC8 in triple-negative breast cancer. We also tested the molecular functions of PLAC8 in triple-negative breast cancer cell lines and measured the expression of PLAC8 and PD-L1 in breast cancer tissues. RESULTS: PLAC8 was generally highly expressed in triple-negative breast cancer and could be modified by UFM1, which maintains PLAC8 protein stability. Moreover, PLAC8 could promote cancer cell proliferation and affect the immune response by regulating the level of PD-L1 ubiquitination. Additionally, among patients with breast cancer, the expression of PLAC8 was higher in triple-negative breast cancer than in non-triple-negative breast cancer and positively correlated with the level of PD-L1. CONCLUSIONS: Our current study discoveries a new PLAC8-regulated network in triple-negative breast cancer and provides corresponding guidance for the clinical diagnosis and immunotherapy of triple-negative breast cancer.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Antígeno B7-H1/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Imunoterapia , Imunidade , Proliferação de Células , Proteínas/uso terapêutico
4.
World J Gastrointest Oncol ; 14(11): 2273-2287, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36438712

RESUMO

BACKGROUND: Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare and rapidly progressive intestinal T-cell non-Hodgkin lymphoma associated with a very poor prognosis and a median survival of 7 mo. Advances in the identification of MEITL over the last two decades have led to its recognition as a separate entity. MEITL patients, predominantly male, typically present with vague and nonspecific symptoms and diagnosis is predominantly confirmed at laparotomy. Currently, there are no standardized treatment protocols, and the optimal therapy remains unclear. CASE SUMMARY: We report a case of MEITL that was initially considered to be gastrointestinal stromal tumor (GIST) and Imatinib was administered for one cycle. The 62-year-old man presented with abdominal pain, abdominal distension, and weight loss of 20 pounds. Within 2 wk, the size of the mass considerably increased on computed tomography scans. The patient underwent surgery followed by chemotherapy with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) and stem-cell transplant. A correct diagnosis of MEITL was established based on postoperative pathology. Immunophenotypically, the neoplastic cells fulfilled the diagnostic criteria for MEITL as they were CD3+, CD4+, CD8+, CD56+, and TIA-1+. CONCLUSION: Given that MEITL has no predisposing factor and presents with vague symptoms with rapid progression, the concomitant presence of abdominal symptoms and B symptoms (weight loss, fever, and night sweats) with hypoalbuminemia, anemia, low lymphocytic count and endoscopic findings of diffuse infiltrating type lesions should alert physicians to this rare disease, especially when it comes to Asian patients. Immediate laparotomy should then be carried out followed by chemotherapy and stem-cell transplant.

5.
Front Genet ; 13: 1005522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246634

RESUMO

Systemic therapy is one of the most significant cancer treatments. However, drug resistance often appears and has become the primary cause of cancer therapy failure. Regulation of drug target, drug metabolism and drug efflux, cell death escape (apoptosis, autophagy, et al.), epigenetic changes, and many other variables are complicatedly involved in the mechanisms of drug resistance. In various types of cancers, long non-coding RNA H19 (lncRNA H19) has been shown to play critical roles in tumor development, proliferation, metastasis, and multiple drug resistance as well. The efficacy of chemotherapy, endocrine therapy, and targeted therapy are all influenced by the expression of H19, especially in breast cancer, liver cancer, lung cancer and colorectal cancer. Here, we summarize the relationship between lncRNA H19 and tumorigenesis, and illustrate the drug resistance mechanisms caused by lncRNA H19 as well. This review may provide more therapeutic potential targets for future cancer treatments.

6.
Biomark Res ; 10(1): 58, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35962400

RESUMO

Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.

8.
Nat Commun ; 13(1): 3034, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641493

RESUMO

Abnormal neddylation activation is frequently observed in human cancers and neddylation inhibition has been proposed as a therapy for cancer. Here, we report that MLN4924, a small-molecule inhibitor of neddylation activating enzyme, increases glutamine uptake in breast cancer cells by causing accumulation of glutamine transporter ASCT2/SLC1A5, via inactivation of CRL3-SPOP E3 ligase. We show the E3 ligase SPOP promotes ASCT2 ubiquitylation, whereas SPOP itself is auto-ubiquitylated upon glutamine deprivation. Thus, SPOP and ASCT2 inversely regulate glutamine uptake and metabolism. SPOP knockdown increases ASCT2 levels to promote growth which is rescued by ASCT2 knockdown. Adding ASCT2 inhibitor V-9302 enhances MLN4924 suppression of tumor growth. In human breast cancer specimens, SPOP and ASCT2 levels are inversely correlated, whereas lower SPOP with higher ASCT2 predicts a worse patient survival. Collectively, our study links neddylation to glutamine metabolism via the SPOP-ASCT2 axis and provides a rational drug combination for enhanced cancer therapy.


Assuntos
Neoplasias da Mama , Proteínas Nucleares , Proteínas Repressoras , Ubiquitina-Proteína Ligases , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Linhagem Celular Tumoral , Feminino , Glutamina/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Cell Death Dis ; 13(4): 396, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459269

RESUMO

Triple-negative breast cancer is still a difficult point in clinical treatment at present, and a deep study of its pathogenesis has great clinical value. Therefore, our research mainly focuses on exploring the progression of triple-negative breast cancer and determines the important role of the HJURP/YAP1/NDRG1 transcriptional regulation axis in triple-negative breast cancer. We observed significantly increased HJURP expression levels in triple-negative breast cancer compared to other subtypes. HJURP could affect the level of ubiquitination modification of YAP1 protein and then regulate its downstream transcriptional activity. Mechanistically, we found that YAP1 positively regulates NDRG1 transcription by binding the promoter region of the NDRG1 gene. And HJURP/YAP1/NDRG1 axis could affect cell proliferation and chemotherapy sensitivity in triple-negative breast cancer. Taken together, these findings provide insights into the transcriptional regulation axis of HJURP/YAP1/NDRG1 in triple-negative breast cancer progression and therapeutic response.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neoplasias de Mama Triplo Negativas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transcrição Gênica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas de Sinalização YAP
11.
Cell Death Dis ; 13(2): 150, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165254

RESUMO

Ferroptosis, which is characterized by intracellular iron accumulation and lipid peroxidation, is a newly described form of regulated cell death that may play a key role in tumour suppression. In the present study, we investigated the expression profiles and biological effects of fascin actin-bundling protein 1 (Fascin, gene name FSCN1) in breast cancer. In addition, bioinformatics analysis of the TCGA cancer database and gain- and loss-of-function studies showed that Fascin enhances sensitivity to erastin-induced ferroptosis. Mechanistically, Fascin directly interacts with cysteine/glutamate transporter (xCT, gene name SLC7A11) and decreases its stability via the ubiquitin-mediated proteasome degradation pathway. Furthermore, we observed that Fascin is substantially upregulated in tamoxifen-resistant breast cancer cell lines, and drug-resistant cells were also more vulnerable to erastin-induced ferroptosis. Taken together, our findings reveal a previously unidentified role of Fascin in ferroptosis by regulating xCT. Thus, ferroptosis activation in breast cancer with high Fascin level may serve as a potential treatment.


Assuntos
Neoplasias da Mama , Proteínas de Transporte , Ferroptose , Proteínas dos Microfilamentos , Piperazinas , Neoplasias da Mama/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Feminino , Ferroptose/genética , Humanos , Proteínas dos Microfilamentos/genética , Piperazinas/farmacologia
12.
Front Cell Dev Biol ; 9: 744990, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957093

RESUMO

Aberrant methylation has been regarded as a hallmark of cancer. 5-hydroxymethylcytosine (5hmC) is recently identified as the ten-eleven translocase (ten-eleven translocase)-mediated oxidized form of 5-methylcytosine, which plays a substantial role in DNA demethylation. Cell-free DNA has been introduced as a promising tool in the liquid biopsy of cancer. There are increasing evidence indicating that 5hmC in cell-free DNA play an active role during carcinogenesis. However, it remains unclear whether 5hmC could surpass classical markers in cancer detection, treatment, and prognosis. Here, we systematically reviewed the recent advances in the clinic and basic research of DNA 5-hydroxymethylation in cancer, especially in cell-free DNA. We further discuss the mechanisms underlying aberrant 5hmC patterns and carcinogenesis. Synergistically, 5-hydroxymethylation may act as a promising biomarker, unleashing great potential in early cancer detection, prognosis, and therapeutic strategies in precision oncology.

13.
Biomark Res ; 9(1): 73, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627411

RESUMO

The role of PLAC8 in tumorigenesis has been gradually elucidated with the development of research. Although there are common molecular mechanisms that enforce cell growth, the impact of PLAC8 is varied and can, in some instances, have opposite effects on tumorigenesis. To systematically understand the role of PLAC8 in tumors, the molecular functions of PLAC8 in cancer will be discussed by focusing on how PLAC8 impacts tumorigenesis when it arises within tumor cells and how these roles can change in different stages of cancer progression with the ultimate goal of suppressing PLAC8-relevant cancer behavior and related pathologies. In addition, we highlight the diversity of PLAC8 in different tumors and its functional output beyond cancer cell growth. The comprehension of PLAC8's molecular function might provide new target and lead to the development of novel anticancer therapies.

14.
Front Oncol ; 11: 697950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336684

RESUMO

Chemoresistance is a daunting challenge to the prognosis of patients with breast cancer. Signal transducer and activator of transcription (STAT) 5a plays vital roles in the development of various cancers, but its function in breast cancer is controversial, and its role in chemoresistance in breast cancer remains unexplored. Here we identified STAT5a as a chemoresistance inducer that regulates the expression of ABCB1 in breast cancer and can be targeted by pimozide, an FDA-approved psychotropic drug. First, we found that STAT5a and ABCB1 were expressed at higher levels in doxorubicin-resistant cell lines and chemoresistant patients, and their expression was positively correlated. Then, we confirmed the essential roles of STAT5a and ABCB1 in doxorubicin resistance in breast cancer cells and the regulation of ABCB1 transcription by STAT5a. Subsequently, the efficacy of pimozide in inhibiting STAT5a and sensitizing doxorubicin-resistant breast cancer cells was tested. Finally, we verified the role of STAT5a in doxorubicin resistance in breast cancer and the efficacy of pimozide in reversing this resistance in vivo. Our study demonstrated the vital role of STAT5a in doxorubicin resistance in breast cancer. Targeting STAT5a might be a promising strategy for treating doxorubicin-resistant breast cancer. Moreover, repurposing pimozide for doxorubicin resensitization is attractive due to the safety profile of pimozide.

15.
Front Cell Dev Biol ; 9: 680968, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141711

RESUMO

Drug resistance is a daunting challenge in the treatment of breast cancer, making it an urgent problem to solve in studies. Cell lines are important tools in basic and preclinical studies; however, few breast cell lines from drug-resistant patients are available. Herein, we established a novel HER2-positive breast cancer cell line from the pleural effusion of a drug-resistant metastatic breast cancer patient. This cell line has potent proliferative capability and tumorigenicity in nude mice but weak invasive and colony-forming capability. The molecular subtype of the cell line and its sensitivity to chemotherapeutics and HER2-targeting agents are different from those of its origin, suggesting that the phenotype changes between the primary and metastatic forms of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...