Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 26(11): 6218-6236, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33963280

RESUMO

Exposure to drugs of abuse induces alterations of dendritic spine morphology and density that has been proposed to be a cellular basis of long-lasting addictive memory and heavily depend on remodeling of its underlying actin cytoskeleton by the actin cytoskeleton regulators. However, the actin cytoskeleton regulators involved and the specific mechanisms whereby drugs of abuse alter their expression or function are largely unknown. Twinfilin (Twf1) is a highly conserved actin-depolymerizing factor that regulates actin dynamics in organisms from yeast to mammals. Despite abundant expression of Twf1 in mammalian brain, little is known about its importance for brain functions such as experience-dependent synaptic and behavioral plasticity. Here we show that conditioned morphine withdrawal (CMW)-induced synaptic structure and behavior plasticity depends on downregulation of Twf1 in the amygdala of rats. Genetically manipulating Twf1 expression in the amygdala bidirectionally regulates CMW-induced changes in actin polymerization, spine density and behavior. We further demonstrate that downregulation of Twf1 is due to upregulation of miR101a expression via a previously unrecognized mechanism involving CMW-induced increases in miR101a nuclear processing via phosphorylation of MeCP2 at Ser421. Our findings establish the importance of Twf1 in regulating opioid-induced synaptic and behavioral plasticity and demonstrate its value as a potential therapeutic target for the treatment of opioid addiction.


Assuntos
Analgésicos Opioides , Proteínas dos Microfilamentos/metabolismo , Síndrome de Abstinência a Substâncias , Citoesqueleto de Actina/metabolismo , Actinas , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Espinhas Dendríticas/metabolismo , Ratos , Síndrome de Abstinência a Substâncias/metabolismo , Sinapses/metabolismo
2.
Behav Brain Res ; 353: 129-136, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30003977

RESUMO

The abuse of amphetamine-type stimulants (ATS) has become a global public health issue in recent years, these new-type drugs can cause addiction and serious cognitive impairment. However, there are no effective methods for the prevention and treatment of ATS addiction at present. Repetitive transcranial magnetic stimulation (rTMS) is a painless and non-invasive new therapeutic approach that has been used for the treatment of depression and other neuropsychiatric disorders, but whether it can be used to treat drug addiction is unclear. In the present study, we investigated the possible effects of rTMS on methamphetamine(METH)-induced conditioned place preference (CPP). High-frequency (10 Hz) and low-frequency stimulation patterns (1 Hz) were applied to test the effect of rTMS on METH-induced CPP. The results showed that low-frequency but not high-frequency rTMS could block METH-CPP, accompanied with a downregulation of gamma-aminobutyric acid type B receptor subunit 1 (GABABR1) expression in rat dorsolateral striatum. These results suggested that low-frequency rTMS could effectively inhibit the development of METH addiction and shed light on the rTMS as a potential approach for the prevention of drug addiction.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/prevenção & controle , Estimulação Magnética Transcraniana , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Expressão Gênica/fisiologia , Masculino , Metanfetamina/farmacologia , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia , Estimulação Magnética Transcraniana/métodos
3.
Front Mol Neurosci ; 10: 313, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051727

RESUMO

Abuse of methamphetamine (METH), a powerful addictive amphetamine-type stimulants (ATS), is becoming a global public health problem. The gamma-aminobutyric acid (GABA)ergic system plays a critical role in METH use disorders. By using rat METH conditioned place preference (CPP) model, we previously demonstrated that METH-associated rewarding memory formation was associated with the reduction of GABAAα1 expression in the dorsal straitum (Dstr), however, the underlying mechanism was unclear. In the present study, we found that METH-induced CPP formation was accompanied by a significant increase in the expression of Synovial apoptosis inhibitor 1 (SYVN1), an endoplasmic reticulum (ER)-associated degradation (ERAD) E3 ubiquitin ligase, in the Dstr. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in both primary cultured neurons and rodent Dstr. Inhibition of proteasomal activity by MG132 and Lactacystin significantly increased GABAAα1 protein levels. We further found that SYVN1 knockdown increased GABAAα1 in the intra-ER, but not in the extra-ER. Accordingly, endoplasmic reticulum stress (ERS)-associated Glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) increased. Thus, this study revealed that SYVN1, as the ERAD E3 ubiquitin ligase, was associated with Dstr GABAAα1 degradation induced by METH conditioned pairing.

4.
J Neurosci ; 37(30): 7096-7110, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28630256

RESUMO

Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABAA receptor (GABAAR) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABAAR endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABAAR endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABAAR endocytosis and CPA extinction. The crucial role of GABAAR endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABAAR endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABAAR endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABAAR endocytosis.SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABAAR endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories.


Assuntos
Aprendizagem da Esquiva/fisiologia , Endocitose/fisiologia , Extinção Psicológica/fisiologia , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de GABA-A/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Masculino , Rememoração Mental/fisiologia , Ratos , Ratos Sprague-Dawley , Repressão Psicológica
5.
Behav Brain Res ; 323: 133-140, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28147236

RESUMO

Repeated exposure to methamphetamine (METH) can cause severe neurotoxicity to the cortical neurons. In the present study, we investigated the effect of METH on cognitive function deficits, and determined the neuroprotective effects of memantine (MEM) on memory impairment induced by METH. The protein levels of Bcl-2 and cleaved caspase-3 in prefrontal cortex (PFC) were further examined to exploring the underlying mechanism. We found that repeated METH administration impaired long term (24h) memory retention without affecting short term (5min) memory retention. Co-administration of MEM with METH before training session significantly improved METH-induced cognitive function. METH significantly decreased expression level of Bcl-2 and increased expression level of cleaved caspase-3 in the PFC. The changes can be prevented by MEM pretreatment. Thus, these results demonstrated that MEM pretreatment reversed METH-induced changes of protein levels of apoptotic-related gene, and produced protective effects against METH-induced cognitive deficits, suggesting the effectiveness of MEM may be due to its anti-apoptotic activity.


Assuntos
Cognição/efeitos dos fármacos , Memantina/administração & dosagem , Memória/efeitos dos fármacos , Metanfetamina/toxicidade , Fármacos Neuroprotetores/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
6.
Acta Pharmacol Sin ; 36(12): 1437-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26567727

RESUMO

AIM: Brain-derived neurotrophic factor (BDNF) plays an important role in learning and memory in multiple brain areas. In the present study, we investigated the roles of BDNF in aversive memories associated with conditioned drug withdrawal in acute morphine-dependent rats. METHODS: Conditioned place aversion (CPA) was induced in male SD rats exposed to a single dose of morphine (10 mg/kg, sc) followed by naloxone (0.3 mg/kg, sc). In some rats, BDNF receptor antagonist K252a (8.5 ng per side) or BDNF scavenger TrkB-FC (0.65 µg per side) was bilaterally microinjected into amygdala before naloxone injection. BDNF mRNA and protein expression levels in amygdala were detected after the behavior testing. RESULTS: CPA behavior was induced in rats by the naloxone-precipitated morphine withdrawal, which was accompanied by significantly increased levels of BDNF mRNA and protein in the amygdala. Bilateral microinjection of TrkB-FC or K252a into the amygdala completely blocked CPA behavior in the rats. CONCLUSION: Formation of aversive memories associated with conditioned drug withdrawal in acute morphine-dependent rats requires BDNF expression in the amygdala.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Dependência de Morfina/genética , Dependência de Morfina/terapia , Naloxona/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , Receptor trkB/genética , Síndrome de Abstinência a Substâncias/genética , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Animais , Terapia Aversiva , Masculino , Morfina/efeitos adversos , Dependência de Morfina/fisiopatologia , Entorpecentes/efeitos adversos , RNA Mensageiro/genética , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/fisiopatologia , Regulação para Cima
7.
Br J Pharmacol ; 172(20): 4847-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26211551

RESUMO

BACKGROUND AND PURPOSE: ß-Arrestins function as signal transducers linking GPCRs to ERK1/2 signalling either by scaffolding members of ERK1/2s cascades or by transactivating receptor tyrosine kinases through Src-mediated release of transactivating factor. Recruitment of ß-arrestins to the activated GPCRs is required for ERK1/2 activation. Our previous studies showed that δ receptors activate ERK1/2 through a ß-arrestin-dependent mechanism without inducing ß-arrestin binding to the δ receptors. However, the precise mechanisms involved remain to be established. EXPERIMENTAL APPROACH: ERK1/2 activation by δ receptor ligands was assessed using HEK293 cells in vitro and male Sprague Dawley rats in vivo. Immunoprecipitation, immunoblotting, siRNA transfection, intracerebroventricular injection and immunohistochemistry were used to elucidate the underlying mechanism. KEY RESULTS: We identified a new signalling pathway in which recruitment of ß-arrestin2 to the EGFR rather than δ receptor was required for its role in δ receptor-mediated ERK1/2 activation in response to H-Tyr-Tic-Phe-Phe-OH (TIPP) or morphine stimulation. Stimulation of the δ receptor with ligands leads to the phosphorylation of PKCδ, which acts upstream of EGFR transactivation and is needed for the release of the EGFR-activating factor, whereas ß-arrestin2 was found to act downstream of the EGFR transactivation. Moreover, we demonstrated that coupling of the PKCδ/EGFR/ß-arrestin2 transactivation pathway to δ receptor-mediated ERK1/2 activation was ligand-specific and the Ser(363) of δ receptors was crucial for ligand-specific implementation of this ERK1/2 activation pathway. CONCLUSIONS AND IMPLICATIONS: The δ receptor-mediated activation of ERK1/2 is via ligand-specific transactivation of EGFR. This study adds new insights into the mechanism by which δ receptors activate ERK1/2.


Assuntos
Arrestinas/metabolismo , Receptores ErbB/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase C-delta/metabolismo , Receptores Opioides delta/metabolismo , Analgésicos Opioides/farmacologia , Animais , Receptores ErbB/genética , Células HEK293 , Humanos , Masculino , Morfina/farmacologia , Oligopeptídeos/farmacologia , Ratos Sprague-Dawley , Tetra-Hidroisoquinolinas/farmacologia , Ativação Transcricional , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...