Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Cell ; 115(3): e2200046, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36571578

RESUMO

BACKGROUND INFORMATION: Autophagy is a conserved process that functions as a cytoprotective mechanism; it may function as a cell death process called programmed cell death type II. There is considerable evidence for the presence of autophagic cell death during oocyte elimination in prepubertal rats. However, the mechanisms involved in this process have not been deciphered. RESULTS: Our observations revealed autophagic cell death in oocytes with increased labeling of the autophagic proteins Beclin 1, light chain 3 A (LC3 A), and lysosomal-associated membrane protein 1 (Lamp1). Furthermore, mTOR and phosphorylated (p)-mTOR (S2448) proteins were significantly decreased in oocytes with increased levels of autophagic proteins, indicating autophagic activation. Moreover, phosphorylated protein kinase B (p-AKT) was not expressed by oocytes, but mitogen-activated protein kinase/extracellular signalregulated kinase (MAPK/ERK) signaling was observed. Additionally, selective and elevated mitochondrial degradation was identified in altered oocytes. CONCLUSIONS: All these results suggest that mTOR downregulation, which promotes autophagy, could be mediated by low energy levels and sustained starvation involving the phosphoinositide 3-kinase (PI3K)/AKT/mTOR and MAPK/ERK pathways. SIGNIFICANCE: In this work, we analyzed the manner in which autophagy is carried out in oocytes undergoing autophagic cell death by studying the behavior of proteins involved in different steps of the autophagic pathway.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Feminino , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Autofagia
2.
J Histochem Cytochem ; 67(12): 873-889, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31583941

RESUMO

Oocyte cell death is a normal process in the mammalian ovary during follicular growth. Recent reports have demonstrated the presence of pro-apoptotic and pro-autophagic proteins during oocyte elimination. The goal of this study was to identify the interactions between proteins involved in different types of programmed cell death in the same oocyte during follicular atresia. We evaluated the presence of Beclin 1 and its interaction with the pro-apoptotic proteins active caspase-3, Bax, and Bak by means of histochemical observations, ultrastructural immunodetection, and immunoprecipitation techniques in ovaries from prepubertal (28- and 33-day-old), juvenile (40-day-old), and young adult (90-day-old) rats. In this study, we identified that oocyte elimination occurred with a high quantity of pro-autophagic protein Beclin 1 and increased the presence of the pro-apoptotic proteins active caspase-3, Bax, and Bak. Conversely, the antiapoptotic protein Bcl-2 was reduced in oocytes from atretic follicles. In addition, Beclin 1 was shown to interact with active caspase-3 and Bax. Our results suggest that the increase in Beclin 1 is directly related to the rise of pro-apoptotic proteins, which could promote the apoptotic process during oocyte elimination.


Assuntos
Proteína Beclina-1/metabolismo , Caspase 3/metabolismo , Atresia Folicular/metabolismo , Folículo Ovariano/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Morte Celular , Feminino , Folículo Ovariano/citologia , Mapas de Interação de Proteínas , Ratos , Ratos Wistar
3.
Biol Cell ; 99(9): 519-30, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17439404

RESUMO

BACKGROUND INFORMATION: Germination is a well-characterized process in which embryo cells of seeds experience a programmed transition from quiescence to proliferation. For this reason they constitute a very good system to analyse nuclear evolution from a dehydrated practically inactive state until the steady state of proliferation. We analysed the temporal and spatial organization of transcription and splicing factors in nuclei of tomato radicle cells during germination. To address this issue we performed in situ immunodetection of several markers of these processes: the Z-DNA stretches forming behind the active RNA polymerases, the splicing proteins U2B'' and Sm, and the trimethyl guanosin cap of small nuclear RNA. The concomitant structural changes of the different nuclear compartments were studied in meristematic nuclei by electron microscopy and high-resolution cytochemistry for DNA and ribonucleoproteins. RESULTS: In quiescent cells practically no Z-DNA stretches were detected and splicing components localized mainly to one or two Cajal bodies associated to the nucleolus. In early germination, a massive de-condensation of chromatin and nucleolar Z-DNA conformation stretches were first detected, followed by the relocation of scarce splicing components to the small interchromatin spaces. Nucleoplasmic Z-DNA stretches were not detected until 4 h of imbibition and were accompanied by an important increase of splicing components in this nuclear domain. Soon after the post-germination stage, transcription and splicing topology and nuclear organization in meristematic nuclei resemble those in steady state growing tomato roots. CONCLUSIONS: Our results demonstrate that, in tomato, dormant nuclei splicing factors are stored in nucleolar Cajal bodies. In early germination, RNA polymerase I transcription is first activated, whereas mRNA transcription is fired later and is accompanied by a massive de-condensation of chromatin and accumulation of splicing factors in the interchromatin domains. Nucleoplasmic Cajal bodies appear later in germination.


Assuntos
Compartimento Celular/fisiologia , Núcleo Celular/metabolismo , Germinação , Raízes de Plantas/ultraestrutura , Splicing de RNA , Transcrição Gênica/fisiologia , Núcleo Celular/genética , DNA Forma Z/metabolismo , DNA Forma Z/ultraestrutura , Germinação/fisiologia , Solanum lycopersicum , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...