Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 323: 198958, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36209921

RESUMO

Post-transcriptional modifications of RNA bases are widespread across all the tree of life and have been linked to RNA maturation, stability, and molecular interactions. RNA modifications have been extensively described in endogenous eukaryotic mRNAs, however, little is known about the presence of RNA modifications in plant viral and subviral RNAs. Here, we used a computational approach to infer RNA modifications in plant-pathogenic viruses and viroids using high-throughput annotation of modified ribonucleotides (HAMR), a software that predicts modified ribonucleotides using high-throughput RNA sequencing data. We analyzed datasets from representative members of different plant viruses and viroids and compared them to plant-endogenous mRNAs. Our approach was able to predict potential RNA chemical modifications (RCMs) in all analyzed pathogens. We found that both DNA and RNA viruses presented a wide range of RCM proportions while viroids had lowest values. Furthermore, we found that for viruses with segmented genomes, some genomic RNAs had a higher proportion of RCM. Interestingly, nuclear-replicating viroids showed most of the predicted modifications located in the pathogenesis region, pointing towards a possible functional role of RCMs in their infectious cycle. Thus, our results strongly suggest that plant viral and subviral RNAs might contain a variety of previously unreported RNA modifications, thus opening a new perspective in the multifaceted process of plant-pathogen interactions.

2.
Front Oncol ; 10: 605386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312959

RESUMO

Gene mutations are strongly associated with tumor progression and are well known in cancer development. However, recently discovered epigenetic alterations have shown the potential to greatly influence tumoral response to therapy regimens. Such epigenetic alterations have proven to be dynamic, and thus could be restored. Due to their reversible nature, the promising opportunity to improve chemotherapy response using epigenetic therapy has arisen. Beyond helping to understand the biology of the disease, the use of modern clinical epigenetics is being incorporated into the management of the cancer patient. Potential epidrug candidates can be found through a process known as drug repositioning or repurposing, a promising strategy for the discovery of novel potential targets in already approved drugs. At present, novel epidrug candidates have been identified in preclinical studies and some others are currently being tested in clinical trials, ready to be repositioned. This epidrug repurposing could circumvent the classic paradigm where the main focus is the development of agents with one indication only, while giving patients lower cost therapies and a novel precision medical approach to optimize treatment efficacy and reduce toxicity. This review focuses on the main approved epidrugs, and their druggable targets, that are currently being used in cancer therapy. Also, we highlight the importance of epidrug repurposing by the rediscovery of known chemical entities that may enhance epigenetic therapy in cancer, contributing to the development of precision medicine in oncology.

3.
Plants (Basel) ; 9(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640631

RESUMO

During in vitro maize plant regeneration somatic cells change their normal fate and undergo restructuring to generate pluripotent cells able to originate new plants. Auxins are essential to achieve such plasticity. Their physiological effects are mediated by auxin response factors (ARFs) that bind auxin responsive elements within gene promoters. Small trans-acting (ta)-siRNAs, originated from miR390-guided TAS3 primary transcript cleavage, target ARF3/4 class (tasiR-ARFs). Here we found that TAS3b precursor as well as derived tasiR-ARFbD5 and tasiR-ARFbD6 display significantly lower levels in non-embryogenic callus (NEC), while TAS3g, miR390 and tasiR-ARFg are more abundant in the same tissue. However, Argonaute (AGO7) and leafbladeless 1 (LBLl) required for tasiR-ARF biogenesis showed significantly higher transcript levels in EC suggesting limited tasiR-ARF biogenesis in NEC. The five maize ARFs targeted by tasiR-ARFs were also significantly enriched in EC and accompanied by higher auxin accumulation with punctuate patterns in this tissue. At hormone half-reduction and photoperiod implementation, plant regeneration initiated from EC with transient TAS3g, miR390 and tasiR-ARFg increase. Upon complete hormone depletion, TAS3b became abundant and derived tasiR-ARFs gradually increased at further regeneration stages. ZmARF transcripts targeted by tasiR-ARFs, as well as AGO7 and LBL1 showed significantly lower levels during regeneration than in EC. These results indicate a dynamic tasiR-ARF mediated regulation throughout maize in vitro plant regeneration.

4.
Methods Mol Biol ; 1815: 397-410, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29981138

RESUMO

MicroRNAs are tiny molecules that strikingly change their expression patterns and distribution during somatic embryogenesis induction and plant regeneration. It is of great relevance to analyze simultaneously the microRNA and target mRNA fates to understand their role in promoting an adequate embryogenic response to external stimulus in the regenerating tissues. Here we describe a method to evaluate the expression patterns of miRNAs or other sRNAs and their target regulation in distinctive tissues observed during maize plant regeneration. Key features of the method include the classification of regenerating plant material with reproducibly distinctive morphological characteristics and a purification procedure that renders high-quality small and large RNA separation from the same sample for qRT-PCR analysis.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Técnicas de Embriogênese Somática de Plantas/métodos , Zea mays/embriologia , Zea mays/genética , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...