Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 203: 116412, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703628

RESUMO

Marine noise is recognised as a growing threat that can induce maladaptive behavioural changes in many aquatic animals, including fishes. The plainfin midshipman is a soniferous fish with a prolonged breeding period, during which males produce tonal hums that attract females, and grunts and growls during agonistic interactions. In this study, we used acoustic recordings to assess the effects of boat noise on the presence, peak frequencies, and durations of plainfin midshipman calls in the wild. We found that all three call types were less likely to occur, and the peak frequencies of hums and grunts increased in the presence of boat noise. We also show that loud and quiet boat noise affected plainfin midshipman vocalizations similarly. As anthropogenic noise is likely to increase in the ocean, it will be important to understand how such noise can affect communication systems, and consequently population health and resiliency.

2.
Sci Data ; 10(1): 892, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110417

RESUMO

A working group from the Global Library of Underwater Biological Sounds effort collaborated with the World Register of Marine Species (WoRMS) to create an inventory of species confirmed or expected to produce sound underwater. We used several existing inventories and additional literature searches to compile a dataset categorizing scientific knowledge of sonifery for 33,462 species and subspecies across marine mammals, other tetrapods, fishes, and invertebrates. We found 729 species documented as producing active and/or passive sounds under natural conditions, with another 21,911 species deemed likely to produce sounds based on evaluated taxonomic relationships. The dataset is available on both figshare and WoRMS where it can be regularly updated as new information becomes available. The data can also be integrated with other databases (e.g., SeaLifeBase, Global Biodiversity Information Facility) to advance future research on the distribution, evolution, ecology, management, and conservation of underwater soniferous species worldwide.


Assuntos
Biodiversidade , Ecologia , Animais , Cetáceos , Peixes , Som
3.
J Acoust Soc Am ; 154(5): 3252-3258, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975736

RESUMO

Despite the importance of acoustic signaling in fishes, the prevalence of the behavioral contexts associated with their active (i.e., intentional) sound production remains unclear. A systematized review was conducted to explore documented acoustic behaviors in marine, subtropical fishes and potential influences affecting their relative pervasiveness. Data were collected on 186 actively soniferous fish species studied across 194 publications, identified based on existing FishSounds and FishBase datasets. Disturbance was the most common behavioral context associated with active sound production-reported for 140 species or 75% of the species studied-and then aggression (n = 46 species, 25%) and reproduction (n = 34 species, 18%). This trend, however, somewhat differed when examined by research effort, study environment, and fish family, such as reproductive sounds being more commonly reported by studies conducted in the wild. The synthesis of fish sound production behaviors was in some ways stymied by the fact that many species' sound production did not have discernible associated behavioral contexts and that some investigations did not clearly identify the study environments in which active sound production was observed. These findings emphasize the importance of context-behavioral or otherwise-when studying acoustic behaviors in fishes.


Assuntos
Acústica , Som , Animais , Peixes , Agressão
4.
PLoS One ; 18(3): e0282651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36877706

RESUMO

Subsurface foraging is an important proportion of the activity budget of rorqual whales, yet information on their behaviour underwater remains challenging to obtain. Rorquals are assumed to feed throughout the water column and to select prey as a function of depth, availability and density, but there remain limitations in the precise identification of targeted prey. Current data on rorqual foraging in western Canadian waters have thus been limited to observations of prey species amenable to surface feeding, such as euphausiids and Pacific herring (Clupea pallasii), with no information on deeper alternative prey sources. We measured the foraging behaviour of a humpback whale (Megaptera novaeangliae) in Juan de Fuca Strait, British Columbia, using three complimentary methods: whale-borne tag data, acoustic prey mapping, and fecal sub-sampling. Acoustically detected prey layers were near the seafloor and consistent with dense schools of walleye pollock (Gadus chalcogrammus) distributed above more diffuse aggregations of pollock. Analysis of a fecal sample from the tagged whale confirmed that it had been feeding on pollock. Integrating the dive profile with the prey data revealed that the whale's foraging effort followed the general pattern of areal prey density, wherein the whale had a higher lunge-feeding rate at the highest prey abundance and stopped feeding when prey became limited. Our findings of a humpback whale feeding on seasonally energy-dense fish like walleye pollock, which are potentially abundant in British Columbia, suggests that pollock may be an important prey source for this rapidly growing whale population. This result is informative when assessing regional fishing activities for semi-pelagic species as well as the whales' vulnerability to fishing gear entanglements and feeding disturbances during a narrow window of prey acquisition.


Assuntos
Gadiformes , Jubarte , Animais , Colúmbia Britânica , Cetáceos , Acústica
5.
J Fish Biol ; 102(4): 870-882, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36651303

RESUMO

Many aspects of natural and hatchery origin salmonid genetics, physiology, behaviour, anatomy and life histories have been compared due to the concerns about what effects domestication and hatchery rearing conditions have on fitness. Genetic and environmental stressors associated with hatchery rearing could cause greater developmental instability (DI), and therefore a higher degree of fluctuating asymmetry (FA) in various bilaterally paired characters, such as otoliths. Nonetheless, to appropriately infer the effects of DI on otolith asymmetry, otolith mineralogy must be accounted for. Vateritic otoliths differ substantially from aragonitic otoliths in terms of mass and shape and can artificially inflate any measurement of FA if not properly accounted for. In this study, measurements of otolith asymmetry between hatchery and natural origin Coho salmon Oncorhynchus kisutch from three different river systems were compared to assess the overall differences in asymmetry when the calcium carbonate polymorph accounted for 59.3% of otoliths from hatchery origin O. kisutch was vateritic compared to 11.7% of otoliths from natural origin O. kisutch. Otolith mineralogy, rather than origin, was the most significant factor influencing the differences in asymmetry for each shape metric. When only aragonitic otoliths were compared, there was no difference in absolute asymmetry between hatchery and natural origin O. kisutch. The authors recommend other researchers to assess otolith mineralogy when conducting studies regarding otolith morphometrics and otolith FA.


Assuntos
Oncorhynchus kisutch , Salmonidae , Animais , Membrana dos Otólitos , Rios , Migração Animal
6.
Environ Monit Assess ; 194(12): 876, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229566

RESUMO

In coastal ecosystems, infaunal (animals living within the sediment) invertebrates are used to study and monitor disturbances. However, it is an open question as to the minimal required sampling intensity to detect that a disturbance has influenced such communities. As such, we implemented a manipulative experiment using an infaunal community with a known response (community composition and population abundances) to a mechanical disturbance (sediment scour), to determine the minimum sampling intensity required to detect differences in the infaunal community. Statistically significant differences (α = 0.05) between the infaunal community of the disturbed and reference replicates were observed in case studies consisting of 99 (4 samples per m2) to 5 (0.2 samples per m2) samples per treatment. Below 5 samples, the known statistical and biological difference was undetectable. However, at least 10 samples per treatment (0.4 samples per m2) were required for the observed infaunal community to be within 93% similarity of our most accurate assessments of the infaunal community. These findings suggest that studies attempting to identify disturbances may require a minimal sampling intensity equivalent to 0.2 samples per m2, while studies attempting to determine how the infaunal community varies with disturbances may require 0.4 samples per m2. These potential minimal required sampling intensities will be of use in the theoretical exploration of disturbances, as well as in applied conservation, restoration, and monitoring projects.


Assuntos
Ecossistema , Monitoramento Ambiental , Animais , Invertebrados/fisiologia
7.
Front Plant Sci ; 13: 991744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311148

RESUMO

In seagrass food webs, small invertebrate mesograzers often exert top-down control on algal epiphytes growing on seagrass blades, which in turn releases the seagrass from competition for light and nutrients. Yet, nearshore habitat boundaries are permeable, and allochthonous subsidies can provide alternative food sources to in-situ production in seagrass meadows, which may in turn alter mesograzer-epiphyte interactions. We examined the contribution of allochthonous kelp (Nereocystis luetkeana), autochthonous epiphytic macroalgal (Smithora naiadum), Ulva lactuca, and seagrass production to mesograzer diets in a subtidal Zostera marina (eelgrass) meadow. In both choice feeding experiments and isotopic analysis, mesograzer diets revealed a preference for allochthonous N. luetkeana over Z. marina, S. naiadum, and U. lactuca. Notably, Idotea resecata showed an ~20x greater consumption rate for N. luetkeana in feeding experiments over other macrophytes. In the meadow, we found a positive relationship between epiphytic S. naiadum and gammarid amphipod biomass suggesting weak top-down control on the S. naiadum biomass. Epiphyte biomass may be driven by bottom-up factors such as environmental conditions, or the availability and preference of allochthonous kelp, though further work is needed to disentangle these interactions. Additionally, we found that gammarid and caprellid amphipod biomass were positively influenced by adjacency to kelp at seagrass meadow edges. Our findings suggest that N. luetkeana kelp subsidies are important to the diets of mesograzers in Z. marina meadows. Spatial planning and management of marine areas should consider trophic linkages between kelp and eelgrass habitats as a critical seascape feature if the goal is to conserve nearshore food web structure and function.

8.
Mar Pollut Bull ; 182: 113921, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35905701

RESUMO

In recent decades shipping traffic has increased, leading to elevated underwater ambient noise levels. Research has been conducted on the noise generated by ships underway, however little is known about potential noise from ships at anchor. In coastal regions, commercial vessels can seek anchorages prior to entering port, leading to concern regarding the impacts on the soundscape and marine ecosystems. Cowichan Bay, British Columbia, a coastal region (800 Ha) 70 km away from the Port of Vancouver, was examined as a case study to understand the possible soundscape contribution from anchored bulk carriers. When a carrier anchored, sound pressure levels (SPL: 20-24,000 Hz) were elevated 2-8 dB re: 1 µPa throughout the bay. These results demonstrate the change anchored carriers can have on underwater soundscapes and is an important step in understanding the potential impact these vessels may have on marine organisms and important ecosystems.


Assuntos
Baías , Ruído , Navios , Colúmbia Britânica , Ecossistema
9.
Ecol Appl ; 32(7): e2654, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35543035

RESUMO

Microplastics (MPs) contamination in marine environments is of increasing concern, as plastic particles are globally ubiquitous across ecosystems. A large variety of aquatic taxa ingest MPs, but the extent to which animals accumulate and transfer MPs through food webs is largely unknown. In this study, we quantified MP uptake in bivalves, crabs, echinoderms, and fish feeding at different trophic levels at three sites on southern Vancouver Island. We paired stable-isotope food web analysis with MP concentrations in digestive tracts across all trophic levels and in fish livers. We then used Bayesian generalized linear mixed models to explore whether bioaccumulation and biomagnification were occurring. Our results showed that MPs (100-5000 µm along their longest dimension) are not biomagnifying in marine coastal food webs, with no correlation between the digestive tract or fish liver MP concentrations and trophic position of the various species. Ecological traits did, however, affect microplastic accumulation in digestive tracts, with suspension feeder and smaller-bodied planktivorous fish ingesting more MPs by body weight. Trophic transfer occurred between prey and predator for rockfish, but higher concentrations in full stomachs compared with empty ones suggested rapid excretion of ingested MPs. Collectively, our findings suggested the movement of MP through marine food webs is facilitated by species-specific mechanisms, with contamination susceptibility a function of species biology, not trophic position. Furthermore, the statistical methods we employ, including machine learning for classifying unknown particles and a probabilistic way to account for background contamination, are universally applicable to the study of microplastics. Our findings advance understanding of how MPs enter and move through aquatic food webs, suggesting that lower-trophic-level animals are more at risk of ingesting >100-µm MPs, relative to higher-trophic-level animals. Our work also highlights the need to advance the study of <100-µm MPs, which are still poorly understood and may need to be considered separately in ecological risk assessments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Teorema de Bayes , Colúmbia Britânica , Ecossistema , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Plásticos/análise , Poluentes Químicos da Água/análise
10.
Mol Ecol ; 31(1): 134-160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614262

RESUMO

Incorporating host-pathogen(s)-environment axes into management and conservation planning is critical to preserving species in a warming climate. However, the role pathogens play in host stress resilience remains largely unexplored in wild animal populations. We experimentally characterized how independent and cumulative stressors (fisheries handling, high water temperature) and natural infections affected the health and longevity of released wild adult sockeye salmon (Oncorhynchus nerka) in British Columbia, Canada. Returning adults were collected before and after entering the Fraser River, yielding marine- and river-collected groups, respectively (N = 185). Fish were exposed to a mild (seine) or severe (gill net) fishery treatment at collection, and then held in flow-through freshwater tanks for up to four weeks at historical (14°C) or projected migration temperatures (18°C). Using weekly nonlethal gill biopsies and high-throughput qPCR, we quantified loads of up to 46 pathogens with host stress and immune gene expression. Marine-collected fish had less severe infections than river-collected fish, a short migration distance (100 km, 5-7 days) that produced profound infection differences. At 14°C, river-collected fish survived 1-2 weeks less than marine-collected fish. All fish held at 18°C died within 4 weeks unless they experienced minimal handling. Gene expression correlated with infections in river-collected fish, while marine-collected fish were more stressor-responsive. Cumulative stressors were detrimental regardless of infections or collection location, probably due to extreme physiological disturbance. Because river-derived infections correlated with single stressor responses, river entry probably decreases stressor resilience of adult salmon by altering both physiology and pathogen burdens, which redirect host responses toward disease resistance.


Assuntos
Pesqueiros , Salmão , Migração Animal , Animais , Colúmbia Britânica , Interação Gene-Ambiente , Salmão/genética
11.
Ecol Evol ; 12(12): e9680, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36619710

RESUMO

Predator diets are largely influenced by prey availability and abundance. Yet, in heterogenous marine environments, identifying the prey species consumed by diving mammals remains a fundamental challenge. For rorqual whales, the energetic constraints of prey engulfment require that the whales seek areas of high prey abundance and execute discrete lunge feeding events on patches of high-density prey. Prey occurrences in feces should therefore provide meaningful insight into the dominant taxa in food patches selected by the animal. We investigated the prey consumed by humpback whales in three regions in southern British Columbia (BC), Canada, using opportunistic fecal sampling, microscopy, and DNA metabarcoding of 14 fecal samples. Fish including Pacific herring (Clupea pallasii), hake (Merluccius productus), and eulachon (Thaleichthys pacificus) were the most common fish species potentially targeted by humpback whales in two regions. The krill Euphausia pacifica was the most prevalent invertebrate DNA detected in all three regions, while sergestid and mysid shrimp may also be important. High DNA read abundances from walleye pollock (Gadus chalcogrammus) and sablefish (Anoplopoma fimbria) were also recovered in one sample each, suggesting that juveniles of these semi-pelagic species may occasionally be targeted. In general, we observed heavily digested fecal material that drove substantial dissimilarities in taxonomic resolution between polymerase chain reaction-based and morphological analyses of the feces. Pacific herring and walleye pollock were the only prey species confirmed by both methods. Our results highlight that molecular and visual analyses of fecal samples provide a complementary approach to diet analysis, with each method providing unique insight into prey diversity.

12.
Glob Chang Biol ; 27(19): 4839-4848, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34254409

RESUMO

From midnight of 26 March 2020, New Zealand became one of the first countries to enter a strict lockdown to combat the spread of COVID-19. The lockdown banned all non-essential services and travel both on land and sea. Overnight, the country's busiest coastal waterway, the Hauraki Gulf Marine Park, became devoid of almost all recreational and non-essential commercial vessels. An almost instant change in the marine soundscape ensued, with ambient sound levels in busy channels dropping nearly threefold the first 12 h. This sudden drop led fish and dolphins to experience an immediate increase in their communication ranges by up to an estimated 65%. Very low vessel activity during the lockdown (indicated by the presence of vessel noise over the day) revealed new insights into cumulative noise effects from vessels on auditory masking. For example, at sites nearer Auckland City, communication ranges increased approximately 18 m (22%) or 50 m (11%) for every 10% decrease in vessel activity for fish and dolphins, respectively. However, further from the city and in deeper water, these communication ranges were increased by approximately 13 m (31%) or 510 m (20%). These new data demonstrate how noise from small vessels can impact underwater soundscapes and how marine animals will have to adapt to ever-growing noise pollution.


Assuntos
Comunicação Animal , COVID-19 , Golfinhos , Acústica , Animais , Controle de Doenças Transmissíveis , Humanos , SARS-CoV-2
13.
Mar Pollut Bull ; 168: 112437, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33957495

RESUMO

The Arctic has been a refuge from anthropogenic underwater noise; however, climate change has caused summer sea ice to diminish, allowing for unprecedented access and the potential for increased underwater noise. Baseline underwater sound levels must be quantified to monitor future changes and manage underwater noise in the Arctic. We analyzed 39 passive acoustic datasets collected throughout the Canadian Arctic from 2014 to 2019 using statistical models to examine spatial and temporal trends in daily mean sound pressure levels (SPL) and quantify environmental and anthropogenic drivers of SPL. SPL (50-1000 Hz) ranged from 70 to 127 dB re 1 µPa (median = 91 dB). SPL increased as wind speed increased, but decreased as both ice concentration and air temperature increased, and SPL increased as the number of ships per day increased. This study provides a baseline for underwater sound levels in the Canadian Arctic and fills many geographic gaps on published underwater sound levels.


Assuntos
Acústica , Som , Regiões Árticas , Canadá , Ruído , Espectrografia do Som
14.
J Hazard Mater ; 413: 125405, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930957

RESUMO

Microplastic particles (MPs) occur widely in aquatic ecosystems and are ingested by a wide range of organisms. While trophic transfer of MPs is known to occur, researchers do not yet fully understand the fate of MPs in food webs. We explored the factors influencing reported ingestion of MPs in marine and freshwater fishes by conducting a literature review of 123 studies published between January 2011 and June 2020. We used Bayesian generalized linear mixed models to determine whether MP ingestion by fishes varies by Food and Agricultural Organization fishing area, trophic level, body size, taxa, and study methodology. After accounting for methodology, strong regional differences were not present, although ingested MP concentrations were slightly different among some FAO areas. According to the reviewed studies, MP concentrations in fish digestive tracts did not increase with either trophic level or body size, suggesting that biomagnification of MPs did not occur, although larger fish were more likely to contain MPs. Researchers reported higher concentrations of MPs in clupeids compared with other commonly studied taxonomic families, which could be due to their planktivorous feeding strategy. Methodology played an influential role in predicting reported concentrations, highlighting the need to harmonize methods among studies.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Teorema de Bayes , Ingestão de Alimentos , Ecossistema , Monitoramento Ambiental , Peixes , Humanos , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
J Fish Biol ; 99(2): 596-606, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33821484

RESUMO

The reproductive biology of Pacific hagfish Eptatretus stoutii (Lockington, 1878) and black hagfish Eptatretus deani (Evermann & Goldsborough, 1907) was assessed using current and historical data. Our results found that the reproductive characteristics of both hagfish species reflect those of K-selected species, which tend to live long and exhibit slow growth rates, low fecundity (approximately 20 eggs per female) and late maturity. Additionally, females of both species commence maturation prior to males. This study provides a population profile for both species of hagfish, but further assessments are needed to effectively manage a sustainable hagfish fishery.


Assuntos
Feiticeiras (Peixe) , Animais , Ecologia , Feminino , Masculino
16.
Science ; 371(6529)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542110

RESUMO

Oceans have become substantially noisier since the Industrial Revolution. Shipping, resource exploration, and infrastructure development have increased the anthrophony (sounds generated by human activities), whereas the biophony (sounds of biological origin) has been reduced by hunting, fishing, and habitat degradation. Climate change is affecting geophony (abiotic, natural sounds). Existing evidence shows that anthrophony affects marine animals at multiple levels, including their behavior, physiology, and, in extreme cases, survival. This should prompt management actions to deploy existing solutions to reduce noise levels in the ocean, thereby allowing marine animals to reestablish their use of ocean sound as a central ecological trait in a healthy ocean.


Assuntos
Organismos Aquáticos/fisiologia , Audição , Ruído , Animais , Oceanos e Mares
17.
Mar Pollut Bull ; 164: 112017, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33517084

RESUMO

Underwater noise pollution is a recognized threat to marine life. In British Columbia, Canada, Pacific rockfish (Sebastes spp.) were historically overfished, prompting the establishment of Rockfish Conservation Areas (RCAs). However, there are no restrictions prohibiting vessel transits in RCAs. We hypothesized that RCAs do not protect rockfish from sub-lethal harm from noise. We compared noise levels at three RCAs with adjacent unprotected reference sites from August 2018-June 2019. While RCAs had lower levels of noise overall than reference sites, this trend was inconsistent; some RCA sites had higher levels of noise during certain time periods than non-RCA sites. A vessel noise detector was the best predictor of noise level over three frequency bands (20-100 Hz, 100-1000 Hz, 1-10 kHz), and predicted sound levels which could mask rockfish communication. We conclude that RCAs do not reliably protect rockfish from noise pollution, and recommend further study into potential impacts on stock recovery.


Assuntos
Bass , Perciformes , Animais , Colúmbia Britânica , Ruído/efeitos adversos , Prevalência
18.
J Fish Biol ; 98(5): 1303-1307, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33373041

RESUMO

Different studies suggest some social calls could be used in fish identification if their specificity is unambiguously assessed. Sounds of different populations of piranhas Serrasalmus maculatus Kner, 1858 were recorded to determine their homogeneity between rivers inside a single basin (Araguari and Grande River, upper Paraná River basin) and between separated basins (Amazon and Paraná basins). All fish from the different populations produced sounds with similar acoustic features. Consequently, the populations were not discernible based on individual sound characteristics. This high homogeneity between sounds from different populations indicates their usefulness for conservation projects using passive acoustic monitoring in piranhas. Moreover, it supports the use of acoustic features as complementary key characteristics in taxonomic studies.


Assuntos
Acústica , Caraciformes/fisiologia , Vocalização Animal/fisiologia , Animais , Brasil , Rios , Som
19.
J Anim Ecol ; 90(2): 528-541, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33159687

RESUMO

Parents providing care must sometimes choose between rearing locations that are most favourable for offspring versus those that are most favourable for themselves. Here, we measured how both parental and offspring performance varied in nest sites distributed along an environmental gradient. The plainfin midshipman fish Porichthys notatus nests along a tidal gradient. When ascending from the subtidal to the high intertidal at low tide, both nest temperature and frequency of air exposure increase. We used one lab and two field experiments to investigate how parental nest site choices across tidal elevations are linked to the physiological costs incurred by parents and the developmental benefits accrued by offspring. Under warmer incubation conditions, simulating high intertidal nests, offspring developed faster but had higher mortality rates compared to those incubated in cooler conditions that mimicked subtidal nests. In the field, males in higher intertidal nests were more active caregivers, but their young still died at the fastest rates. Larger males claimed and retained low intertidal nests, where offspring survival and development rates were also highest. Our results suggest that males compete more intensively for nest sites in the low intertidal, where they can raise their young quickly and with lower per-offspring investments. Smaller, less-competitive males forced into higher intertidal sites nest earlier in the season and provide more active parental care, possibly to bolster brood survival under harsh environmental conditions.


Assuntos
Batracoidiformes , Animais , Masculino , Comportamento de Nidação , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...