Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Artif Intell ; 6: 1243584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780836

RESUMO

The sliding sleeve holds a pivotal role in regulating fluid flow during hydraulic fracturing within shale oil extraction processes. However, concerns persist surrounding its reliability due to repeated attempts at opening the sleeve, resulting in process inefficiencies. While downhole cameras can verify sleeve states, their high cost poses a limitation. This study proposes an alternative approach, leveraging downhole data analysis for sleeve incident detection in lieu of cameras. This study introduces "XGSleeve," a novel machine-learning methodology. XGSleeve amalgamates hidden Markov model-based clustering with the XGBoost model, offering robust identification of sleeve incidents. This method serves as an operator-centric tool, addressing the domains of oil and gas, well completion, sliding sleeves, time series classification, signal processing, XGBoost, and hidden Markov models. The XGSleeve model exhibits a commendable 86% precision in detecting sleeve incidents. This outcome significantly curtails the need for multiple sleeve open-close attempts, thereby enhancing operational efficiency and safety. The successful implementation of the XGSleeve model rectifies existing limitations in sleeve incident detection, consequently fostering optimization, safety, and resilience within the oil and gas sector. This innovation further underscores the potential for data-driven decision-making in the industry. The XGSleeve model represents a groundbreaking advancement in sleeve incident detection, demonstrating the potential for broader integration of AI and machine learning in oil and gas operations. As technology advances, such methodologies are poised to optimize processes, minimize environmental impact, and promote sustainable practices. Ultimately, the adoption of XGSleeve contributes to the enduring growth and responsible management of global oil and gas resources.

2.
Front Artif Intell ; 5: 1040295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703955

RESUMO

Machine learning techniques for crop genomic selections, especially for single-environment plants, are well-developed. These machine learning models, which use dense genome-wide markers to predict phenotype, routinely perform well on single-environment datasets, especially for complex traits affected by multiple markers. On the other hand, machine learning models for predicting crop phenotype, especially deep learning models, using datasets that span different environmental conditions, have only recently emerged. Models that can accept heterogeneous data sources, such as temperature, soil conditions and precipitation, are natural choices for modeling GxE in multi-environment prediction. Here, we review emerging deep learning techniques that incorporate environmental data directly into genomic selection models.

3.
Front Plant Sci ; 12: 761402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975945

RESUMO

Fusarium head blight (FHB) incited by Fusarium graminearum Schwabe is a devastating disease of barley and other cereal crops worldwide. Fusarium head blight is associated with trichothecene mycotoxins such as deoxynivalenol (DON), which contaminates grains, making them unfit for malting or animal feed industries. While genetically resistant cultivars offer the best economic and environmentally responsible means to mitigate disease, parent lines with adequate resistance are limited in barley. Resistance breeding based upon quantitative genetic gains has been slow to date, due to intensive labor requirements of disease nurseries. The production of a high-throughput genome-wide molecular marker assembly for barley permits use in development of genomic prediction models for traits of economic importance to this crop. A diverse panel consisting of 400 two-row spring barley lines was assembled to focus on Canadian barley breeding programs. The panel was evaluated for FHB and DON content in three environments and over 2 years. Moreover, it was genotyped using an Illumina Infinium High-Throughput Screening (HTS) iSelect custom beadchip array of single nucleotide polymorphic molecular markers (50 K SNP), where over 23 K molecular markers were polymorphic. Genomic prediction has been demonstrated to successfully reduce FHB and DON content in cereals using various statistical models. Herein, we have studied an alternative method based on machine learning and compare it with a statistical approach. The bi-allelic SNPs represented pairs of alleles and were encoded in two ways: as categorical (-1, 0, 1) or using Hardy-Weinberg probability frequencies. This was followed by selecting essential genomic markers for phenotype prediction. Subsequently, a Transformer-based deep learning algorithm was applied to predict FHB and DON. Apart from the Transformer method, a Residual Fully Connected Neural Network (RFCNN) was also applied. Pearson correlation coefficients were calculated to compare true vs. predicted outputs. Models which included all markers generally showed marginal improvement in prediction. Hardy-Weinberg encoding generally improved correlation for FHB (6.9%) and DON (9.6%) for the Transformer network. This study suggests the potential of the Transformer based method as an alternative to the popular BLUP model for genomic prediction of complex traits such as FHB or DON, having performed equally or better than existing machine learning and statistical methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...