Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 10(8): 2102-2109, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060167

RESUMO

Neisseria meningitidis is the leading cause of epidemic meningitis in the "meningitis belt" of Africa, where clonal waves of colonization and disease are observed. Point mutations and horizontal gene exchange lead to constant diversification of meningococcal populations during clonal spread. Maintaining a high genomic diversity may be an evolutionary strategy of meningococci that increases chances of fixing occasionally new highly successful "fit genotypes". We have performed a longitudinal study of meningococcal carriage and disease in northern Ghana by analyzing cerebrospinal fluid samples from all suspected meningitis cases and monitoring carriage of meningococci by twice yearly colonization surveys. In the framework of this study, we observed complete replacement of an A: sequence types (ST)-2859 clone by a W: ST-2881 clone. However, after a gap of 1 year, A: ST-2859 meningococci re-emerged both as colonizer and meningitis causing agent. Our whole genome sequencing analyses compared the A population isolated prior to the W colonization and disease wave with the re-emerging A meningococci. This analysis revealed expansion of one clone differing in only one nonsynonymous SNP from several isolates already present in the original A: ST-2859 population. The colonization bottleneck caused by the competing W meningococci thus resulted in a profound reduction in genomic diversity of the A meningococcal population.


Assuntos
Neisseria meningitidis/genética , Variação Genética , Gana , Humanos , Meningite/líquido cefalorraquidiano , Meningite/microbiologia , Neisseria meningitidis/isolamento & purificação , Filogenia , Recombinação Genética
2.
Vaccines (Basel) ; 3(4): 850-74, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26501327

RESUMO

Alternatives to the well-established capsular polysaccharide-based vaccines against Streptococcus pneumoniae that circumvent limitations arising from limited serotype coverage and the emergence of resistance due to capsule switching (serotype replacement) are being widely pursued. Much attention is now focused on the development of recombinant subunit vaccines based on highly conserved pneumococcal surface proteins and virulence factors. A further step might involve focusing the host humoral immune response onto protective protein epitopes using as immunogens structurally optimized epitope mimetics. One approach to deliver such epitope mimetics to the immune system is through the use of synthetic virus-like particles (SVLPs). SVLPs are made from synthetic coiled-coil lipopeptides that are designed to spontaneously self-assemble into 20-30 nm diameter nanoparticles in aqueous buffer. Multivalent display of epitope mimetics on the surface of SVLPs generates highly immunogenic nanoparticles that elicit strong epitope-specific humoral immune responses without the need for external adjuvants. Here, we set out to demonstrate that this approach can yield vaccine candidates able to elicit a protective immune response, using epitopes derived from the proline-rich region of pneumococcal surface protein A (PspA). These streptococcal SVLP-based vaccine candidates are shown to elicit strong humoral immune responses in mice. Following active immunization and challenge with lethal doses of streptococcus, SVLP-based immunogens are able to elicit significant protection in mice. Furthermore, a mimetic-specific monoclonal antibody is shown to mediate partial protection upon passive immunization. The results show that SVLPs combined with synthetic epitope mimetics may have potential for the development of an effective vaccine against Streptococcus pneumoniae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA