Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193554

RESUMO

Beyond well-documented confinement and surface effects arising from the large internal surface and severely confining porosity of nanoporous hosts, the transport of nanoconfined fluids remains puzzling in many aspects. With striking examples such as memory, i.e., non-viscous effects, intermittent dynamics, and surface barriers, the dynamics of fluids in nanoconfinement challenge classical formalisms (e.g., random walk, viscous/advective transport)-especially for molecular pore sizes. In this context, while molecular frameworks such as intermittent Brownian motion, free volume theory, and surface diffusion are available to describe the self-diffusion of a molecularly confined fluid, a microscopic theory for collective diffusion (i.e., permeability), which characterizes the flow induced by a thermodynamic gradient, is lacking. Here, to fill this knowledge gap, we invoke the concept of "De Gennes narrowing," which relates the wavevector-dependent collective diffusivity D0(q) to the fluid structure factor S(q). First, using molecular simulation for a simple yet representative fluid confined in a prototypical solid (zeolite), we unravel an essential coupling between the wavevector-dependent collective diffusivity and the structural ordering imposed on the fluid by the crystalline nanoporous host. Second, despite this complex interplay with marked Bragg peaks in the fluid structure, the fluid collective dynamics is shown to be accurately described through De Gennes narrowing. Moreover, in contrast to the bulk fluid, the departure from De Gennes narrowing for the confined fluid in the macroscopic limit remains small as the fluid/solid interactions in severe confinement screen collective effects and, hence, weaken the wavevector dependence of collective transport.

2.
Phys Rev Lett ; 131(12): 128101, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802936

RESUMO

The concept of topological defects is universal. In condensed matter, it applies to disclinations, dislocations, or vortices that are fingerprints of symmetry breaking during phase transitions. Using as a generic example the tangles of dislocations, we introduce the concept of topological metadefects, i.e., defects made of defects. We show that in cholesterics, dextrogyre and levogyre primary tangles are generated through the D_{2}→C_{2} symmetry breaking from the coplanar dislocation pair called Lehmann cluster submitted to a high enough tensile strain. The primary tangles can be wound up individually into double helices. They can also annihilate in pairs or associate into tangles of higher orders following simple algebraic rules.

3.
Langmuir ; 38(18): 5428-5438, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35486814

RESUMO

Molecular simulations and experiments are used to investigate methane adsorption in bulk and thin layers of MFI zeolite (silicalite-1). After comparing the theoretical adsorption data obtained using Grand Canonical Monte Carlo simulations for bulk MFI at various temperatures against experiments, zeolite layers with different crystalline orientations and levels of surface flexibility are considered. The data obtained for such prototypical systems allow us to rationalize both the qualitative and quantitative impact of external surface in nanoporous solids. In particular, due to strong confinement in zeolite pores, methane is found to adsorb at low pressures in the core of the zeolite while external surface adsorption occurs at pressures where the internal porosity of zeolite is saturated. Using Polanyi's adsorption potential theory, which is derived here from Hill's general scheme for adsorption, we provide a simple thermodynamic formalism to predict consistently adsorption both in the internal porosity and at the external surface of nanoporous solids. While this seminal theory has been already applied for gases in nanoporous solids, its extension to describe both surface and volume adsorption is important to provide a general rational framework for fluid adsorption in finely divided materials. We also discuss the applicability of this formalism for gas adsorption data under supercritical conditions.

4.
Proc Natl Acad Sci U S A ; 119(12): e2112248119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35302891

RESUMO

The proneness of water to crystallize is a major obstacle to understanding its putative exotic behavior in the supercooled state. It also represents a strong practical limitation to cryopreservation of biological systems. Adding some concentration of glycerol, which has a cryoprotective effect preventing, to some degree, water crystallization, has been proposed as a possible way out, provided the concentration is small enough for water to retain some of its bulk character and/or for limiting the damage caused by glycerol on living organisms. Contrary to previous expectations, we show that, in the "marginal" glycerol molar concentration ≈ 18%, at which vitrification is possible with no crystallization on rapid cooling, water crystallizes upon isothermal annealing even below the calorimetric glass transition of the solution. Through a time-resolved polarized neutron scattering investigation, we extract key parameters, size and shape of the ice crystallites, fraction of water that crystallizes, and crystallization time, which are important for cryoprotection, as a function of the annealing temperature. We also characterize the nature of the out-of-equilibrium liquid phases that are present at low temperature, providing more arguments against the presence of an isocompositional liquid­liquid transition. Finally, we propose a rule of thumb to estimate the lower temperature limit below which water crystallization does not occur in aqueous solutions.

5.
J Phys Chem B ; 125(6): 1618-1631, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33535754

RESUMO

Despite their promising use in electrochemical and electrokinetic devices, ionic-liquid-based electrolytes often exhibit complex behavior arising from a subtle interplay of their structure and dynamics. Here, we report a joint experimental and molecular simulation study of such electrolytes obtained by mixing 1-butyl 3-methylimidazolium tetrafluoroborate with lithium tetrafluoroborate. More in detail, experiments consisting of X-ray scattering, pulsed field gradient NMR, and complex impedance spectroscopy are analyzed in the light of molecular dynamics simulations to probe the structural, dynamical, and electrochemical properties of this ionic-liquid-based electrolyte. Lithium addition promotes the nanostructuration of the liquid as evidenced from the appearance of a scattering prepeak that becomes more pronounced. Microscopically, using the partial structure factors determined from molecular dynamics, this prepeak is shown to correspond to the formation of well-ordered positive/negative charge series and also large aggregates (Lin(BF4)4-m)(4-m+n)-, which develop upon lithium addition. Such nanoscale ordering entails a drastic decrease in both the molecular mobility and ionic conductivity. In particular, the marked association of Li+ cations with four BF4- anions and long ion pairing times, which are promoted upon lithium addition, are found to severely hinder the Li+ transport properties.

6.
ChemSusChem ; 13(3): 590-600, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31793224

RESUMO

Designing highly conductive ionomers at high temperature and low relative humidity is challenging in proton-exchange membrane fuel cells. Perfluorosulfonyl imide ionomers were believed to achieve this goal, owing to their exceptional acidity and excellent thermal stability. Perfluorosulfonyl imide ionomers are less conductive than the analogous perfluorosulfonic acids despite similar membrane microstructure. In this study, the distinct behavior is rationalized by in situ synchrotron infrared spectroscopy during hydration. The protonation mechanism, formation of the protonic moiety and water clustering are totally different for the two different families of membranes. The ionization mediated by trans-to-cis conformational transition of the perfluorosulfonyl imide ionomer is not accompanied by the formation of hydronium ions. In contrast, Zundel-ion entities were identified as the elementary protonic complex, which is stable over the hydration range. The H-bond network of surrounding water molecules appears to be less connected and the protons remain highly localized and unavailable for efficient structural transport. The delocalization of protons and their mitigated interaction with the surrounding medium are prominent effects that negatively impact conductivity.

7.
J Chem Phys ; 148(3): 031102, 2018 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-29352782

RESUMO

X-ray scattering measurements were utilized to probe the effects of pressure on a series of ionic liquids, N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr1A-TFSI) (A = 3, 6, and 9), along with mixtures of ionic liquid and 30 mol. % lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. No evidence was found for crystallization of the pure ionic liquids or salt mixtures even at pressures up to 9.2 GPa. No phase separation or demixing was observed for the ionic liquid and salt mixtures. Shifts in the peak positions are indicative of compression of the ionic liquids and mixtures up to 2 GPa, after which samples reach a region of relative incompressibility, possibly indicative of a transition to a glassy state. With the application of pressure, the intensity of the prepeak was found to decrease significantly, indicating a reduction in cation alkyl chain aggregation. Additionally, incompressibility of the scattering peak associated with the distance between like-charges in the pure ionic liquids compared to that in mixtures with lithium salt suggests that the application of pressure could inhibit Li+ coordination with TFSI- to form Li[TFSI2]- complexes. This inhibition occurs through the suppression of TFSI- in the trans conformer, in favor of the smaller cis conformer, at high pressures.

8.
Sci Rep ; 7(1): 2241, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28533551

RESUMO

Ionic Liquids (ILs) are a specific class of molecular electrolytes characterized by the total absence of co-solvent. Due to their remarkable chemical and electrochemical stability, they are prime candidates for the development of safe and sustainable energy storage systems. The competition between electrostatic and van der Waals interactions leads to a property original for pure liquids: they self-organize in fluctuating nanometric aggregates. So far, this transient structuration has escaped to direct clear-cut experimental assessment. Here, we focus on a imidazolium based IL and use particle-probe rheology to (i) catch this phenomenon and (ii) highlight an unexpected consequence: the self-diffusion coefficient of the cation shows a one order of magnitude difference depending whether it is inferred at the nanometric or at the microscopic scale. As this quantity partly drives the ionic conductivity, such a peculiar property represents a strong limiting factor to the performances of ILs-based batteries.

9.
Phys Rev E ; 95(1-1): 012708, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208449

RESUMO

The mechanism of charge motion in conductive and photosensitive mesogenic block copolymers containing polyethylene oxide (PEO) segments is investigated over a wide frequency and temperature range with the broadband dielectric spectroscopy technique. It is found that the ultraviolet (UV) irradiation, the UV intensity, and the anchoring conditions of mesogenic unit in the cells produce changes in conductivity properties and in the molecular arrangement. The anisotropic nature of the conductivity is established.

10.
J Magn Reson ; 277: 25-29, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28213048

RESUMO

Many single-sided permanent magnet NMR systems have been proposed over the years allowing for 1D proton-density profiling, diffusion measurements and relaxometry. In this manuscript we make use of a recently published unilateral magnet for low-field NMR exhibiting an extremely uniform magnetic field gradient with moderate strength and cylindrical symmetry, allowing for a well-defined sweet spot. Combined with a goniometer, our system is used to characterize precisely the uniformity of its gradient and to achieve micrometric precision 1D profiling, as well as spatially localized relaxometry and diffusometry on thick (∼150µm) membrane samples. Profiling with this magnet did not require repositioning of the samples with respect to the 1D tomograph.

11.
Nanoscale ; 9(5): 1901-1908, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28094396

RESUMO

When probed at the macroscopic scale, Ionic Liquids (ILs) behave as highly dissociated (i.e. strong) electrolytes while, at the molecular scale, they show clear characteristics of weak ionic solutions. The multi-scale analysis we report in this paper reconciles these apparently at odds behaviors. We investigate by quasi-elastic neutron scattering (QENS) and neutron spin-echo (NSE), the nanometer/nanosecond dynamics of OMIM-BF4, an imidazolium-based IL showing strong nanostructuration. We also probe the same IL on the microscopic (µm and ms) scale by pulsed field gradient NMR. To interpret the neutron data, we introduce a new physical model to account for the dynamics of the side-chains and for the diffusion of the whole molecule. This model describes the observables over the whole and unprecedented investigated spatial ([0.15-1.65] Å-1) and time ([0.5-2000] ps) ranges. We arrive at a coherent and unified structural/dynamical description of the local cation dynamics: a localized motion within the IL nanometric domains is combined with a genuine long-range translational motion. The QENS, NSE and NMR experiments describe the same long-range translational process, but probed at different scales. The associated diffusion coefficients are more than one order of magnitude different. We show how this apparent discrepancy is a manifestation of the IL nanostructuration.

12.
ACS Appl Mater Interfaces ; 9(2): 1671-1683, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27966862

RESUMO

Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.

13.
J Am Chem Soc ; 138(33): 10437-43, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27455124

RESUMO

A groundbreaking discovery in nanofluidics was the observation of the tremendously enhanced water permeability of carbon nanotubes, those iconic objects of nanosciences. The origin of this phenomenon is still a subject of controversy. One of the proposed explanations involves dramatic modifications of the H-bond network of nanoconfined water with respect to that of bulk water. Infrared spectroscopy is an ideal technique to follow modifications of this network through the inter- and intramolecular bonds of water molecules. Here we report the first infrared study of water uptake at controlled vapor pressure in single walled carbon nanotubes with diameters ranging from 0.7 to 2.1 nm. It reveals a predominant contribution of loose H bonds even for fully hydrated states, irrespective of the nanotube size. Our results show that, while the dominating loosely bond signature is attributed to a one-dimensional chain structure for small diameter nanotubes, this feature also results from a water layer with "free" OH (dangling) bonds facing the nanotube wall for larger diameter nanotubes. These experimental findings provide a solid reference for further modeling of water behavior in hydrophobic nanochannels.

14.
Sci Rep ; 6: 25938, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27185018

RESUMO

The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

15.
ACS Macro Lett ; 4(5): 561-565, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35596305

RESUMO

Changes in large-scale polymer diffusivity along interfaces, arising from transient surface contacts at the nanometer scale, are not well understood. Using proton pulsed-gradient NMR, we here study the equilibrium micrometer-scale self-diffusion of poly(butadiene) chains along ∼100 µm long, 20 and 60 nm wide channels in alumina, which is a system without confinement-related changes in segmental relaxation time. Unlike previous reports on nonequilibrium start-up diffusion normal to an interface or into particulate nanocomposites, we find a reduction of the diffusivity that appears to depend only upon the pore diameter but not on the molecular weight in a range between 2 and 24 kg/mol. We rationalize this by a simple volume-average model for the monomeric friction coefficient, which suggests a 10-fold surface-enhanced friction on the scale of a single molecular layer. Further support is provided by applying our model to the analysis of published data on large-scale diffusion in thin films.

16.
J Phys Chem B ; 118(47): 13357-64, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24941122

RESUMO

The hexafluorophosphoric acid clathrate hydrate is known as a "super-protonic" conductor: its proton conductivity is of the order of 0.1 S/cm at ca. room temperature. The long-range proton diffusion and the associated mechanism have been analyzed with the help of incoherent quasi-elastic neutron scattering (QENS) and proton pulsed-field-gradient nuclear magnetic resonance ((1)H PFG-NMR). The system crystallizes into the so-called type I clathrate structure (SI) at low temperature and into the type VII structure (SVII) above ca. 230 K with a melting point close to room temperature. While, in the SI phase, no long-range proton diffusion is observed (at least faster than the present measurement capabilities, i.e., 10(-7) cm(2)·s(-1)) with respect to the probed time scale, both techniques evidence a long-range proton diffusion process in the SVII phase (3.85 × 10(-6) cm(2)·s(-1) at 275 K with an activation energy of 0.19 ± 0.04 eV). QENS experiments lead to modeling the microscopic mechanism of the long-range proton diffusion by means of a Chudley-Elliot jump diffusion model with a characteristic jump distance of 2.79 ± 0.17 Å. In other words, the long-range diffusion occurs through a Grotthus mechanism with proton jumping from one water-oxygen site to another. Moreover, the analysis of the proton diffusion for hydration numbers greater than 6 (i.e., in the SVII structure) reveals that the additional water molecules coexisting with the SVII structure act as a "structural defect" barrier for the proton diffusivity, responsible for the conductivity.

17.
J Phys Chem Lett ; 3(3): 441-4, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26285864

RESUMO

Pulsed-field gradient spin-echo (PGSE) NMR is a widely used method for the determination of molecular and ionic self-diffusion coefficients. The analysis has thus far been limited largely to (1)H, (7)Li, (19)F, and (31)P nuclei. This limitation handicaps the analysis of materials without these nuclei or for which these nuclei are insufficient for complete characterization. This is demonstrated with a class of ionic liquids (or ILs) based on the nonfluorinated anion 4,5-dicarbonitrile-1,2,3-triazole (DCTA(-)). It is demonstrated here that (13)C-PGSE NMR can be used to both verify the diffusion coefficients obtained from other nuclei, as well as characterize materials that lack commonly scrutinized nuclei - all without the need for specialized NMR methods.

18.
Phys Chem Chem Phys ; 13(34): 15523-9, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21799958

RESUMO

Interfacial tension, electrical conductivity, NMR self-diffusion and DLS experiments have been used to investigate the self-aggregation in water of ionic liquids associating an ibuprofenate anion and 1-alkyl-3-methylimidazolium [C(n)MIm](+) (n = 4, 6, 8) cations. Despite the short alkyl chain on imidazolium cations (n ≤ 8), these ionic liquids exhibit particularly low Critical Aggregation Concentrations (CAC), significantly lower than their parent 1-alkyl-3-methylimidazolium chloride salts. This behaviour is attributed to the formation of catanionic pairs between ibuprofenate and imidazolium.


Assuntos
Benzoatos/química , Ibuprofeno/análogos & derivados , Imidazóis/química , Líquidos Iônicos/química , Tensoativos/química , Ânions/química , Cátions/química , Ibuprofeno/química , Propriedades de Superfície
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 1): 060801, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20866370

RESUMO

We address the dynamical behavior of a single polymer chain under nanometric confinement. We show how neutron spin-echo, combined with contrast matching and zero average contrast, makes it possible to, all at once, (i) match the intense porous detrimental elastic small angle neutron scattering contribution to the total intermediate scattering function I(Q,t) and (ii) measure the Q dependence of the dynamical modes of a single chain under confinement. The method presented here has a general relevance when probing the large scale dynamics of a system of large molecular mass under confinement.


Assuntos
Biofísica/métodos , Polímeros/química , Microscopia Eletrônica de Varredura/métodos , Nanotecnologia/métodos , Nêutrons , Polietilenoglicóis/química , Porosidade , Reologia , Espalhamento de Radiação
20.
J Phys Chem B ; 114(1): 220-7, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19968315

RESUMO

Using pulsed gradient spin-echo NMR, we studied molecular self-diffusion in aligned samples of a hybrid lyotropic lamellar L(alpha) phase. This composite organic-inorganic material was obtained by doping the lamellar phase of the nonionic surfactant Brij-30 with the [PW(12)O(40)](3-) polyoxometalate (POM). Both water and POM self-diffusion display a large anisotropy, as diffusion is severely restricted along the normal to the bilayers. Water diffusion in planes parallel to the bilayers does not depend on the POM concentration but depends on the lamellar period, which is due to a variable fraction of "bound" water molecules. POM diffusion in the hybrid L(alpha) phase is almost 2 orders of magnitude slower than in aqueous solution. Moreover, it is not at all affected by the thickness of the aqueous medium separating the bilayers. This proves that the POM nanoparticles do not freely diffuse in the interbilayer aqueous space but adsorb onto the PEG brushes that cover both sides of the surfactant bilayers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...