Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5750, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188169

RESUMO

Nuclear export complexes composed of rev response element (RRE) ribonucleic acid (RNA) and multiple molecules of rev protein are promising targets for the development of therapeutic strategies against human immunodeficiency virus type 1 (HIV-1), but their assembly remains poorly understood. Using native mass spectrometry, we show here that rev initially binds to the upper stem of RRE IIB, from where it is relayed to binding sites that allow for rev dimerization. The newly discovered binding region implies initial rev recognition by nucleotides that are not part of the internal loop of RRE stem IIB RNA, which was previously identified as the preferred binding region. Our study highlights the unique capability of native mass spectrometry to separately study the binding interfaces of RNA/protein complexes of different stoichiometry, and provides a detailed understanding of the mechanism of RRE/rev association with implications for the rational design of potential drugs against HIV-1 infection.


Assuntos
HIV-1/metabolismo , RNA Viral/metabolismo , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Genes env , HIV-1/química , HIV-1/genética , Espectrometria de Massas , Conformação de Ácido Nucleico , Multimerização Proteica , RNA Viral/química , RNA Viral/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/química
2.
Nucleic Acids Res ; 48(2): 949-961, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31754719

RESUMO

RNA aptamers-artificially created RNAs with high affinity and selectivity for their target ligand generated from random sequence pools-are versatile tools in the fields of biotechnology and medicine. On a more fundamental level, they also further our general understanding of RNA-ligand interactions e. g. in regard to the relationship between structural complexity and ligand affinity and specificity, RNA structure and RNA folding. Detailed structural knowledge on a wide range of aptamer-ligand complexes is required to further our understanding of RNA-ligand interactions. Here, we present the atomic resolution structure of an RNA-aptamer binding to the fluorescent xanthene dye tetramethylrhodamine. The high resolution structure, solved by NMR-spectroscopy in solution, reveals binding features both common and different from the binding mode of other aptamers with affinity for ligands carrying planar aromatic ring systems such as the malachite green aptamer which binds to the tetramethylrhodamine related dye malachite green or the flavin mononucleotide aptamer.


Assuntos
Aptâmeros de Nucleotídeos/química , Conformação de Ácido Nucleico , RNA/química , Rodaminas/química , Ligantes , Espectroscopia de Ressonância Magnética , Dobramento de RNA
3.
Nucleic Acids Res ; 47(21): 11430-11440, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31665419

RESUMO

Although group II intron ribozymes are intensively studied the question how structural dynamics affects splicing catalysis has remained elusive. We report for the first time that the group II intron domain 6 exists in a secondary structure equilibrium between a single- and a two-nucleotide bulge conformation, which is directly linked to a switch between sugar puckers of the branch site adenosine. Our study determined a functional sugar pucker equilibrium between the transesterification active C2'-endo conformation of the branch site adenosine in the 1nt bulge and an inactive C3'-endo state in the 2nt bulge fold, allowing the group II intron to switch its activity from the branching to the exon ligation step. Our detailed NMR spectroscopic investigation identified magnesium (II) ions and the branching reaction as regulators of the equilibrium populations. The tuneable secondary structure/sugar pucker equilibrium supports a conformational selection mechanism to up- and downregulate catalytically active and inactive states of the branch site adenosine to orchestrate the multi-step splicing process. The conformational dynamics of group II intron domain 6 is also proposed to be a key aspect for the directionality selection in reversible splicing.


Assuntos
Íntrons/genética , Conformação de Ácido Nucleico , Splicing de RNA/fisiologia , RNA/química , Açúcares/química , Sítios de Ligação , Carboidratos/química , Magnésio/química , Espectroscopia de Ressonância Magnética , RNA/metabolismo , Açúcares/metabolismo
4.
Nucleic Acids Res ; 47(5): 2654-2665, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30590743

RESUMO

S-adenosylmethionine (SAM) is a central metabolite since it is used as a methyl group donor in many different biochemical reactions. Many bacteria control intracellular SAM concentrations using riboswitch-based mechanisms. A number of structurally different riboswitch families specifically bind to SAM and mainly regulate the transcription or the translation of SAM-biosynthetic enzymes. In addition, a highly specific riboswitch class recognizes S-adenosylhomocysteine (SAH)-the product of SAM-dependent methyl group transfer reactions-and regulates enzymes responsible for SAH hydrolysis. High-resolution structures are available for many of these riboswitch classes and illustrate how they discriminate between the two structurally similar ligands SAM and SAH. The so-called SAM/SAH riboswitch class binds both ligands with similar affinities and is structurally not yet characterized. Here, we present a high-resolution nuclear magnetic resonance structure of a member of the SAM/SAH-riboswitch class in complex with SAH. Ligand binding induces pseudoknot formation and sequestration of the ribosome binding site. Thus, the SAM/SAH-riboswitches are translational 'OFF'-switches. Our results establish a structural basis for the unusual bispecificity of this riboswitch class. In conjunction with genomic data our structure suggests that the SAM/SAH-riboswitches might be an evolutionary late invention and not a remnant of a primordial RNA-world as suggested for other riboswitches.


Assuntos
Biossíntese de Proteínas , Riboswitch/genética , S-Adenosil-Homocisteína/química , S-Adenosilmetionina/química , Evolução Molecular , Genômica , Ligantes , RNA/química , RNA/genética , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
5.
Nat Commun ; 9(1): 4865, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451861

RESUMO

The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited.


Assuntos
2-Aminopurina/análogos & derivados , Anticódon/química , Códon/química , Inosina/metabolismo , Biossíntese de Proteínas , Receptor 5-HT2C de Serotonina/genética , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Anticódon/metabolismo , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Sequência de Bases , Códon/metabolismo , Citidina/análogos & derivados , Citidina/genética , Citidina/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Humanos , Ligação de Hidrogênio , Inosina/genética , Piridonas/química , Piridonas/metabolismo , RNA de Transferência de Glicina/genética , RNA de Transferência de Glicina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Chemistry ; 24(71): 18903-18906, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30300940

RESUMO

Watson-Crick like G-U mismatches with tautomeric Genol or Uenol bases can evade fidelity checkpoints and thereby contribute to translational errors. The 5-oxyacetic acid uridine (cmo5 U) modification is a base modification at the wobble position on tRNAs and is presumed to expand the decoding capability of tRNA at this position by forming Watson-Crick like cmo5 Uenol -G mismatches. A detailed investigation on the influence of the cmo5 U modification on structural and dynamic features of RNA was carried out by using solution NMR spectroscopy and UV melting curve analysis. The introduction of a stable isotope labeled variant of the cmo5 U modifier allowed the application of relaxation dispersion NMR to probe the potentially formed Watson-Crick like cmo5 Uenol -G base pair. Surprisingly, we find that at neutral pH, the modification promotes transient formation of anionic Watson-Crick like cmo5 U- -G, and not enolic base pairs. Our results suggest that recoding is mediated by an anionic Watson-Crick like species, as well as bring an interesting aspect of naturally occurring RNA modifications into focus-the fine tuning of nucleobase properties leading to modulation of the RNA structural landscape by adoption of alternative base pairing patterns.

7.
Biomol NMR Assign ; 12(2): 329-334, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30051308

RESUMO

Riboswitches are structured RNA elements in the 5'-untranslated regions of bacterial mRNAs that are able to control the transcription or translation of these mRNAs in response to the specific binding of small molecules such as certain metabolites. Riboswitches that bind with high specificity to either S-adenosylmethionine (SAM) or S-adenosylhomocysteine (SAH) are widespread in bacteria. Based on differences in secondary structure and sequence these riboswitches can be grouped into a number of distinct classes. X-ray structures for riboswitch RNAs in complex with SAM or SAH established a structural basis for understanding ligand recognition and discrimination in many of these riboswitch classes. One class of riboswitches-the so-called SAM/SAH riboswitch class-binds SAM and SAH with similar affinity. However, this class of riboswitches is structurally not yet characterized and the structural basis for its unusual bispecificity is not established. In order to understand the ligand recognition mode that enables this riboswitch to bind both SAM and SAH with similar affinities, we are currently determining its structure in complex with SAH using NMR spectroscopy. Here, we present the NMR resonance assignment of the SAM/SAH binding riboswitch (env9b) in complex with SAH as a prerequisite for a solution NMR-based high-resolution structure determination.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Riboswitch , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Conformação de Ácido Nucleico
8.
Proc Natl Acad Sci U S A ; 115(3): E382-E389, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29298914

RESUMO

Termination of protein synthesis is triggered by the recognition of a stop codon at the ribosomal A site and is mediated by class I release factors (RFs). Whereas in bacteria, RF1 and RF2 promote termination at UAA/UAG and UAA/UGA stop codons, respectively, eukaryotes only depend on one RF (eRF1) to initiate peptide release at all three stop codons. Based on several structural as well as biochemical studies, interactions between mRNA, tRNA, and rRNA have been proposed to be required for stop codon recognition. In this study, the influence of these interactions was investigated by using chemically modified stop codons. Single functional groups within stop codon nucleotides were substituted to weaken or completely eliminate specific interactions between the respective mRNA and RFs. Our findings provide detailed insight into the recognition mode of bacterial and eukaryotic RFs, thereby revealing the chemical groups of nucleotides that define the identity of stop codons and provide the means to discriminate against noncognate stop codons or UGG sense codons.


Assuntos
Códon de Terminação/genética , Escherichia coli/metabolismo , Fatores de Terminação de Peptídeos/fisiologia , Proteínas de Escherichia coli/metabolismo , Mutagênese Sítio-Dirigida , Nucleotídeos , Terminação Traducional da Cadeia Peptídica , Biossíntese de Proteínas
9.
Nucleic Acids Res ; 45(21): 12536-12550, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040648

RESUMO

RNA interference defends against RNA viruses and retro-elements within an organism's genome. It is triggered by duplex siRNAs, of which one strand is selected to confer sequence-specificity to the RNA induced silencing complex (RISC). In Drosophila, Dicer-2 (Dcr-2) and the double-stranded RNA binding domain (dsRBD) protein R2D2 form the RISC loading complex (RLC) and select one strand of exogenous siRNAs according to the relative thermodynamic stability of base-pairing at either end. Through genome editing we demonstrate that Loqs-PD, the Drosophila homolog of human TAR RNA binding protein (TRBP) and a paralog of R2D2, forms an alternative RLC with Dcr-2 that is required for strand choice of endogenous siRNAs in S2 cells. Two canonical dsRBDs in Loqs-PD bind to siRNAs with enhanced affinity compared to miRNA/miRNA* duplexes. Structural analysis, NMR and biophysical experiments indicate that the Loqs-PD dsRBDs can slide along the RNA duplex to the ends of the siRNA. A moderate but notable binding preference for the thermodynamically more stable siRNA end by Loqs-PD alone is greatly amplified in complex with Dcr-2 to initiate strand discrimination by asymmetry sensing in the RLC.


Assuntos
Proteínas de Drosophila/metabolismo , RNA Helicases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , Animais , Proteínas Argonautas/metabolismo , Células Cultivadas , Drosophila/metabolismo , Ligação Proteica , Domínios Proteicos , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/química , Proteínas de Ligação a RNA/química , Termodinâmica
10.
Nucleic Acids Res ; 45(15): 9178-9192, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28911104

RESUMO

We report the synthesis of atom-specifically 13C-modified building blocks that can be incorporated into DNA via solid phase synthesis to facilitate investigations on structural and dynamic features via NMR spectroscopy. In detail, 6-13C-modified pyrimidine and 8-13C purine DNA phosphoramidites were synthesized and incorporated into a polypurine tract DNA/RNA hybrid duplex to showcase the facile resonance assignment using site-specific labeling. We also addressed micro- to millisecond dynamics in the mini-cTAR DNA. This DNA is involved in the HIV replication cycle and our data points toward an exchange process in the lower stem of the hairpin that is up-regulated in the presence of the HIV-1 nucleocapsid protein 7. As another example, we picked a G-quadruplex that was earlier shown to exist in two folds. Using site-specific 8-13C-2'deoxyguanosine labeling we were able to verify the slow exchange between the two forms on the chemical shift time scale. In a real-time NMR experiment the re-equilibration of the fold distribution after a T-jump could be monitored yielding a rate of 0.012 min-1. Finally, we used 13C-ZZ-exchange spectroscopy to characterize the kinetics between two stacked X-conformers of a Holliday junction mimic. At 25°C, the refolding process was found to occur at a forward rate constant of 3.1 s-1 and with a backward rate constant of 10.6 s-1.


Assuntos
DNA Cruciforme/química , DNA/química , Repetição Terminal Longa de HIV , Proteínas do Nucleocapsídeo/química , Compostos Organofosforados/química , RNA/química , Pareamento de Bases , Isótopos de Carbono , Quadruplex G , HIV-1/química , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mimetismo Molecular , Conformação de Ácido Nucleico , Compostos Organofosforados/síntese química , Técnicas de Síntese em Fase Sólida
11.
Nucleic Acids Res ; 45(7): 4255-4268, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28126922

RESUMO

Ensuring the correct folding of RNA molecules in the cell is of major importance for a large variety of biological functions. Therefore, chaperone proteins that assist RNA in adopting their functionally active states are abundant in all living organisms. An important feature of RNA chaperone proteins is that they do not require an external energy source to perform their activity, and that they interact transiently and non-specifically with their RNA targets. So far, little is known about the mechanistic details of the RNA chaperone activity of these proteins. Prominent examples of RNA chaperones are bacterial cold shock proteins (Csp) that have been reported to bind single-stranded RNA and DNA. Here, we have used advanced NMR spectroscopy techniques to investigate at atomic resolution the RNA-melting activity of CspA, the major cold shock protein of Escherichia coli, upon binding to different RNA hairpins. Real-time NMR provides detailed information on the folding kinetics and folding pathways. Finally, comparison of wild-type CspA with single-point mutants and small peptides yields insights into the complementary roles of aromatic and positively charged amino-acid side chains for the RNA chaperone activity of the protein.


Assuntos
Proteínas e Peptídeos de Choque Frio/química , Proteínas e Peptídeos de Choque Frio/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Dobramento de RNA , RNA/química , Aminoácidos Aromáticos/química , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RNA/metabolismo
12.
Biomol NMR Assign ; 11(1): 29-34, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27730489

RESUMO

RNA aptamers are used in a wide range of biotechnological or biomedical applications. In many cases the high resolution structures of these aptamers in their ligand-complexes have revealed fundamental aspects of RNA folding and RNA small molecule interactions. Fluorescent RNA-ligand complexes in particular find applications as optical sensors or as endogenous fluorescent tags for RNA tracking in vivo. Structures of RNA aptamers and aptamer ligand complexes constitute the starting point for rational function directed optimization approaches. Here, we present the NMR resonance assignment of an RNA aptamer binding to the fluorescent ligand tetramethylrhodamine (TMR) in complex with the ligand 5-carboxy-tetramethylrhodamine (5-TAMRA) as a starting point for a high-resolution structure determination using NMR spectroscopy in solution.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Rodaminas/metabolismo , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Ligantes
13.
J Med Chem ; 59(23): 10788-10793, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27933946

RESUMO

A ligand-observed 1H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand-target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime.


Assuntos
Espectroscopia de Prótons por Ressonância Magnética , Relação Dose-Resposta a Droga , Cinética , Ligantes , Estrutura Molecular , Peso Molecular , Relação Estrutura-Atividade , Fatores de Tempo
14.
Angew Chem Int Ed Engl ; 55(39): 12008-12, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27533469

RESUMO

In this work an improved stable isotope labeling protocol for nucleic acids is introduced. The novel building blocks eliminate/minimize homonuclear (13) C and (1) H scalar couplings thus allowing proton relaxation dispersion (RD) experiments to report accurately on the chemical exchange of nucleic acids. Using site-specific (2) H and (13) C labeling, spin topologies are introduced into DNA and RNA that make (1) H relaxation dispersion experiments applicable in a straightforward manner. The novel RNA/DNA building blocks were successfully incorporated into two nucleic acids. The A-site RNA was previously shown to undergo a two site exchange process in the micro- to millisecond time regime. Using proton relaxation dispersion experiments the exchange parameters determined earlier could be recapitulated, thus validating the proposed approach. We further investigated the dynamics of the cTAR DNA, a DNA transcript that is involved in the viral replication cycle of HIV-1. Again, an exchange process could be characterized and quantified. This shows the general applicablility of the novel labeling scheme for (1) H RD experiments of nucleic acids.


Assuntos
DNA/química , Marcação por Isótopo/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , RNA/química , Sequência de Bases , Conformação de Ácido Nucleico , Prótons
15.
Nat Chem Biol ; 12(9): 702-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27398999

RESUMO

The field of small self-cleaving nucleolytic ribozymes has been invigorated by the recent discovery of the twister, twister-sister, pistol and hatchet ribozymes. We report the crystal structure of a pistol ribozyme termed env25, which adopts a compact tertiary architecture stabilized by an embedded pseudoknot fold. The G-U cleavage site adopts a splayed-apart conformation with in-line alignment of the modeled 2'-O of G for attack on the adjacent to-be-cleaved P-O5' bond. Highly conserved residues G40 (N1 position) and A32 (N3 and 2'-OH positions) are aligned to act as a general base and a general acid, respectively, to accelerate cleavage chemistry, with their roles confirmed by cleavage assays on variants, and an increased pKa of 4.7 for A32. Our structure of the pistol ribozyme defined how the overall and local topologies dictate the in-line alignment at the G-U cleavage site, with cleavage assays on variants revealing key residues that participate in acid-base-catalyzed cleavage chemistry.


Assuntos
Biocatálise , Conformação de Ácido Nucleico , Dobramento de RNA , RNA Catalítico/química , RNA Catalítico/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , RNA Catalítico/genética
16.
Methods Enzymol ; 565: 461-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26577742

RESUMO

Given that Ribonucleic acids (RNAs) are a central hub of various cellular processes, methods to synthesize these RNAs for biophysical studies are much needed. Here, we showcase the applicability of 6-(13)C-pyrimidine phosphoramidites to introduce isolated (13)C-(1)H spin pairs into RNAs up to 40 nucleotides long. The method allows the incorporation of 6-(13)C-uridine and -cytidine residues at any desired position within a target RNA. By site-specific positioning of the (13)C-label using RNA solid phase synthesis, these stable isotope-labeling patterns are especially well suited to resolve resonance assignment ambiguities. Of even greater importance, the labeling pattern affords accurate quantification of important functional transitions of biologically relevant RNAs (e.g., riboswitch aptamer domains, viral RNAs, or ribozymes) in the µs- to ms time regime and beyond without complications of one bond carbon scalar couplings. We outline the chemical synthesis of the 6-(13)C-pyrimidine building blocks and their use in RNA solid phase synthesis and demonstrate their utility in Carr Purcell Meiboom Gill relaxation dispersion, ZZ exchange, and chemical exchange saturation transfer NMR experiments.


Assuntos
Marcação por Isótopo , Ressonância Magnética Nuclear Biomolecular/métodos , Compostos Organofosforados/química , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...