Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069018

RESUMO

The proper regeneration of vessel anastomoses in microvascular surgery is crucial for surgical safety. Pituitary adenylate cyclase-activating polypeptide (PACAP) can aid healing by decreasing inflammation, apoptosis and oxidative stress. In addition to hematological and hemorheological tests, we examined the biomechanical and histological features of vascular anastomoses with or without PACAP addition and/or using a hemostatic sponge (HS). End-to-end anastomoses were established on the right femoral arteries of rats. On the 21st postoperative day, femoral arteries were surgically removed for evaluation of tensile strength and for histological and molecular biological examination. Effects of PACAP were also investigated in tissue culture in vitro to avoid the effects of PACAP degrading enzymes. Surgical trauma and PACAP absorption altered laboratory parameters; most notably, the erythrocyte deformability decreased. Arterial wall thickness showed a reduction in the presence of HS, which was compensated by PACAP in both the tunica media and adventitia in vivo. The administration of PACAP elevated these parameters in vitro. In conclusion, the application of the neuropeptide augmented elastin expression while HS reduced it, but no significant alterations were detected in collagen type I expression. Elasticity and tensile strength increased in the PACAP group, while it decreased in the HS decreased. Their combined use was beneficial for vascular regeneration.


Assuntos
Hemostáticos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Hemostáticos/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo
2.
Curr Protoc ; 3(7): e835, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37427867

RESUMO

Much of the skeletal system develops by endochondral ossification, a process that takes place in early fetal life. This makes the early stages of chondrogenesis, i.e., when chondroprogenitor mesenchymal cells differentiate to chondroblasts, challenging to study in vivo. In vitro methods for the study of chondrogenic differentiation have been available for some time. There is currently high interest in developing fine-tuned methodology that would allow chondrogenic cells to rebuild articular cartilage and restore joint functionality. The micromass culture system that relies on embryonic limb bud-derived chondroprogenitor cells is a popular method for the study of the signaling pathways that control the formation and maturation of cartilage. In this protocol, we describe a technique fine-tuned in our laboratory for culturing limb bud-derived mesenchymal cells from early-stage chick embryos in high density (Basic Protocol 1). We also provide a fine-tuned method for high-efficiency transient transfection of cells before plating using electroporation (Basic Protocol 2). In addition, protocols for histochemical detection of cartilage extracellular matrix using dimethyl methylene blue, Alcian blue, and safranin O are also provided (Basic Protocol 3 and Alternate Protocols 1 and 2, respectively). Finally, a step-by-step guide on a cell viability/proliferation assay using MTT reagent is also described (Basic Protocol 4). © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Micromass culture of chick embryonic limb bud-derived cells Basic Protocol 2: Transfection of cells with siRNA constructs using electroporation prior to micromass culturing Basic Protocol 3: Qualitative and quantitative assessment of cartilage matrix production using dimethyl methylene blue staining and image analysis Alternate Protocol 1: Qualitative assessment of cartilage matrix production using Alcian blue staining Alternate Protocol 2: Qualitative assessment of cartilage matrix production using safranin O staining Basic Protocol 4: Measurement of mitochondrial activity with the MTT assay.


Assuntos
Galinhas , Azul de Metileno , Animais , Embrião de Galinha , Azul de Metileno/metabolismo , Azul Alciano/metabolismo , Células Cultivadas , Cartilagem/metabolismo , Regeneração
3.
Front Cardiovasc Med ; 10: 1168339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332579

RESUMO

Introduction: Valve calcification (VC) is a widespread complication in chronic kidney disease (CKD) patients. VC is an active process with the involvement of in situ osteogenic transition of valve interstitial cells (VICs). VC is accompanied by the activation of hypoxia inducible factor (HIF) pathway, but the role of HIF activation in the calcification process remains undiscovered. Methods and result: Using in vitro and in vivo approaches we addressed the role of HIF activation in osteogenic transition of VICs and CKD-associated VC. Elevation of osteogenic (Runx2, Sox9) and HIF activation markers (HIF-1α and HIF-2α) and VC occurred in adenine-induced CKD mice. High phosphate (Pi) induced upregulation of osteogenic (Runx2, alkaline-phosphatase, Sox9, osteocalcin) and hypoxia markers (HIF-1α, HIF-2α, Glut-1), and calcification in VICs. Down-regulation of HIF-1α and HIF-2α inhibited, whereas further activation of HIF pathway by hypoxic exposure (1% O2) or hypoxia mimetics [desferrioxamine, CoCl2, Daprodustat (DPD)] promoted Pi-induced calcification of VICs. Pi augmented the formation of reactive oxygen species (ROS) and decreased viability of VICs, whose effects were further exacerbated by hypoxia. N-acetyl cysteine inhibited Pi-induced ROS production, cell death and calcification under both normoxic and hypoxic conditions. DPD treatment corrected anemia but promoted aortic VC in the CKD mice model. Discussion: HIF activation plays a fundamental role in Pi-induced osteogenic transition of VICs and CKD-induced VC. The cellular mechanism involves stabilization of HIF-1α and HIF-2α, increased ROS production and cell death. Targeting the HIF pathways may thus be investigated as a therapeutic approach to attenuate aortic VC.

4.
Curr Protoc ; 3(3): e692, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36880775

RESUMO

Articular cartilage is characterized by a low density of chondrocytes surrounded by an abundant extracellular matrix (ECM) consisting of a dense mixture of collagens, proteoglycans, and glycosaminoglycans. Due to its low cellularity and high proteoglycan content, it is particularly challenging to extract high-quality total RNA suitable for sensitive high-throughput downstream applications such as RNA sequencing (RNA-Seq). Available protocols for high-quality RNA isolation from articular chondrocytes are inconsistent, resulting in suboptimal yield and compromised quality. This poses a significant difficulty in the application of RNA-Seq to study the cartilage transcriptome. Current protocols rely either on dissociation of cartilage ECM by collagenase digestion or pulverizing cartilage using various methods prior to RNA extraction. However, protocols for cartilage processing vary significantly depending on the species and source of cartilage within the body. Protocols for isolating RNA from human or large mammal (e.g., horse or cattle) cartilage samples are available, but this is not the case for chicken cartilage, despite the species being extensively used in cartilage research. Here, we present two improved RNA isolation protocols based on pulverization of fresh articular cartilage using a cryogenic mill or on enzymatic digestion using 1.2% (w/v) collagenase II. Our protocols optimize the collection and tissue processing steps to minimize RNA degradation and enhance RNA purity. Our results show that RNA purified from chicken articular cartilage using these methods has appropriate quality for RNA-Seq experiments. The procedure is applicable for RNA extraction from cartilage from other species such as dog, cat, sheep, and goat. The workflow for RNA-Seq analysis is also described here. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Extraction of total RNA from pulverized chicken articular cartilage Alternate Protocol: Extraction of total RNA from collagen-digested articular cartilage Support Protocol: Dissection of chicken articular cartilage from the knee joint Basic Protocol 2: RNA sequencing of total RNA from chicken articular cartilage.


Assuntos
Cartilagem Articular , Humanos , Animais , Bovinos , Cães , Cavalos , Ovinos , Sequenciamento de Nucleotídeos em Larga Escala , Condrócitos , Galinhas/genética , Cabras , Proteoglicanas , RNA/genética
5.
Diagnostics (Basel) ; 12(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35454018

RESUMO

Endometriosis is a chronic gynecological disease that causes numerous severe symptoms in affected women. Revealing alterations of the molecular processes in ectopic endometrial tissue is the current policy for understanding the pathomechanisms and discovering potential novel therapeutic targets. Examining molecular processes of eutopic endometrium is likely to be a convenient method to compare it with the molecular alterations observed in ectopic tissues. The aim of the present study was to determine what proportion of the surgically resected eutopic endometrial samples is suitable for further experiments so that these can be comparable with endometriosis. Final hospital reports and histopathology reports of a 3-year-long period (1162 cases) were analysed. The application of a retrospective screening method promoted the categorization of these cases, and quantification of the categorized cases was accomplished. In addition, results obtained from cultured endometrium samples were also detailed. Only a small number of the harvested endometrial samples was suitable for further molecular analysis, while preoperative screening protocol could enlarge this fraction. Applying clinical and histopathological selection and exclusion criteria for tissue screening and histopathological examination of samples could ensure the comparability of healthy endometrium with endometriosis. The present study could be useful for researchers who intend to perform molecular experiments to compare endometriosis with the physiological processes of the endometrium.

6.
Front Oncol ; 11: 681603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616669

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide which is distributed throughout the body. PACAP influences development of various tissues and exerts protective function during cellular stress and in some tumour formation. No evidence is available on its role in neural crest derived melanocytes and its malignant transformation into melanoma. Expression of PACAP receptors was examined in human skin samples, melanoma lesions and in a primary melanocyte cell culture. A2058 and WM35 melanoma cell lines, representing two different stages of melanoma progression, were used to investigate the effects of PACAP. PAC1 receptor was identified in melanocytes in vivo and in vitro and in melanoma cell lines as well as in melanoma lesions. PACAP administration did not alter viability but decreased proliferation of melanoma cells. With live imaging random motility, average speed, vectorial distance and maximum distance of migration of cells were reduced upon PACAP treatment. PACAP administration did not alter viability but decreased proliferation capacity of melanoma cells. On the other hand, PACAP administration decreased the migration of melanoma cell lines towards fibronectin chemoattractant in the Boyden chamber. Furthermore, the presence of the neuropeptide inhibited the invasion capability of melanoma cell lines in Matrigel chambers. In summary, we provide evidence that PACAP receptors are expressed in melanocytes and in melanoma cells. Our results also prove that various aspects of the cellular motility were inhibited by this neuropeptide. On the basis of these results, we propose PACAP signalling as a possible target in melanoma progression.

7.
J Alzheimers Dis ; 81(3): 1195-1209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33896841

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative illness, with several peripheral pathological signs such as accumulation of amyloid-ß (Aß) plaques in the kidney. Alterations of transforming growth factor ß (TGFß) signaling in the kidney can induce fibrosis, thus disturbing the elimination of Aß. OBJECTIVE: A protective role of increased physical activity has been proven in AD and in kidney fibrosis, but it is not clear whether TGFß signalization is involved in this effect. METHODS: The effects of long-term training on fibrosis were investigated in the kidneys of mice representing a model of AD (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) by comparing wild type and AD organs. Alterations of canonical and non-canonical TGFß signaling pathways were followed with PCR, western blot, and immunohistochemistry. RESULTS: Accumulation of collagen type I and interstitial fibrosis were reduced in kidneys of AD mice after long-term training. AD induced the activation of canonical and non-canonical TGFß pathways in non-trained mice, while expression levels of signal molecules of both TGFß pathways became normalized in trained AD mice. Decreased amounts of phosphoproteins with molecular weight corresponding to that of tau and the cleaved C-terminal of AßPP were detected upon exercising, along with a significant increase of PP2A catalytic subunit expression. CONCLUSION: Our data suggest that physical training has beneficial effects on fibrosis formation in kidneys of AD mice and TGFß signaling plays a role in this phenomenon.


Assuntos
Doença de Alzheimer/patologia , Rim/patologia , Condicionamento Físico Animal/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Fibrose/metabolismo , Fibrose/patologia , Rim/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia
8.
J Mol Neurosci ; 71(8): 1543-1555, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31808034

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally secreted signaling peptide and has important regulatory roles in the differentiation of the central nervous system and its absence results in disorders in femur development. PACAP has an important function in prevention of oxidative stress or mechanical stress in chondrogenesis but little is known about its function in bone regeneration. A new callus formation model was set to investigate its role in bone remodeling. Fracturing was 5 mm distal from the proximal articular surface of the tibia and the depth was 0.5 mm. Reproducibility of callus formation was investigated with CT 3, 7, and 21 days after the operation. Absence of PACAP did not alter the alkaline phosphatase (ALP) activation in PACAP KO healing process. In developing callus, the expression of collagen type I increased in wild-type (WT) and PACAP KO mice decreased to the end of healing process. Expression of the elements of BMP signaling was disturbed in the callus formation of PACAP KO mice, as bone morphogenic protein 4 (BMP4) and 6 showed an early reduction in bone regeneration. However, elevated Smad1 expression was demonstrated in PACAP KO mice. Our results indicate that PACAP KO mice show various signs of disturbed bone healing and suggest PACAP compensatory and fine tuning effects in proper bone regeneration.


Assuntos
Regeneração Óssea , Calo Ósseo/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Calo Ósseo/fisiologia , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo
9.
Redox Biol ; 38: 101808, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264701

RESUMO

Ultraviolet B radiation (UVB) is an environmental complete carcinogen, which induces and promotes keratinocyte carcinomas, the most common human malignancies. UVB induces the formation of cyclobutane pyrimidine dimers (CPDs). Repairing CPDs through nucleotide excision repair is slow and error-prone in placental mammals. In addition to the mutagenic and malignancy-inducing effects, UVB also elicits poorly understood complex metabolic changes in keratinocytes, possibly through CPDs. To determine the effects of CPDs, CPD-photolyase was overexpressed in keratinocytes using an N1-methyl pseudouridine-containing in vitro-transcribed mRNA. CPD-photolyase, which is normally not present in placental mammals, can efficiently and rapidly repair CPDs to block signaling pathways elicited by CPDs. Keratinocytes surviving UVB irradiation turn hypermetabolic. We show that CPD-evoked mitochondrial reactive oxygen species production, followed by the activation of several energy sensor enzymes, including sirtuins, AMPK, mTORC1, mTORC2, p53, and ATM, is responsible for the compensatory metabolic adaptations in keratinocytes surviving UVB irradiation. Compensatory metabolic changes consist of enhanced glycolytic flux, Szent-Györgyi-Krebs cycle, and terminal oxidation. Furthermore, mitochondrial fusion, mitochondrial biogenesis, and lipophagy characterize compensatory hypermetabolism in UVB-exposed keratinocytes. These properties not only support the survival of keratinocytes, but also contribute to UVB-induced differentiation of keratinocytes. Our results indicate that CPD-dependent signaling acutely maintains skin integrity by supporting cellular energy metabolism.


Assuntos
Dano ao DNA , Dímeros de Pirimidina , Animais , Reparo do DNA , Feminino , Humanos , Queratinócitos/metabolismo , Estresse Oxidativo , Placenta/metabolismo , Gravidez , Dímeros de Pirimidina/metabolismo , Raios Ultravioleta/efeitos adversos
10.
Front Cell Neurosci ; 14: 243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922265

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder with typical amyloid beta (Aß) aggregations. Elimination of the Aß precursors via the kidneys makes the organ a potential factor in the systemic degeneration leading to AD. Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts neuroprotective effects in AD and plays a protective role in kidney pathologies. Increased physical activity is preventive of the formation of AD, but its detailed mechanism and possible connections with PACAP have not been clarified. In the kidneys of AD mice, the effects of physical activity were investigated by comparing wild-type and AD organs. Aß plaque formation was reduced in AD kidneys after increased training (TAD). Mechanotransduction elevated PACAP receptor expression in TAD mice and normalized the protein kinase A (PKA)-mediated pathways. BMP4/BMPR1 elevation activated Smad1 expression and normalized collagen type IV in TAD animals. In conclusion, our data suggest that elevated physical activity can prevent the AD-induced pathological changes in the kidneys via, at least in part, the activation of PACAP-BMP signaling crosstalk.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32765418

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs. Among others, PACAP has widespread expression in the digestive system, where it shows protective effects in various intestinal pathologies, such as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in both the exocrine and endocrine pancreas as well as liver where it reduces inflammation and steatosis by interfering with hepatic pathology related to obesity. It is found in several exocrine glands and also in urinary organs, where, with its protective effects being mainly published regarding renal pathologies, PACAP is protective in numerous conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the respiratory system. In the skin, it is involved in the development of inflammatory pathology such as psoriasis and also has anti-allergic effects in a model of contact dermatitis. In the non-neuronal part of the visual system, PACAP showed protective effects in pathological conditions of the cornea and retinal pigment epithelial cells. The positive role of PACAP has been demonstrated on the formation and healing processes of cartilage and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The protective role of PACAP was also demonstrated in the cardiovascular system in different pathological processes including hyperglycaemia-induced endothelial dysfunction and age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative stress, and cardiomyopathies. PACAP is also involved in the protection against the development of pre-senile systemic amyloidosis, which is presented in various peripheral organs in PACAP-deficient mice. The studies summarized here provide strong evidence for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP depend on a number of factors which are also shortly discussed in the present review.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Animais , Sistema Cardiovascular/fisiopatologia , Sistema Digestório/fisiopatologia , Glândulas Exócrinas/fisiopatologia , Fígado Gorduroso/fisiopatologia , Humanos , Inflamação/fisiopatologia , Pâncreas Exócrino/fisiopatologia , Sistema Respiratório/fisiopatologia , Pele/fisiopatologia , Sistema Urogenital/fisiopatologia
12.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785075

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with protective functions in the central nervous system and various peripheral organs. PACAP has the highest expression level in the testes, among the peripheral organs, and has a positive regulative role in spermatogenesis and in sperm motility. In the present study, we explored testicular degenerative alterations in a mouse model of Alzheimer's disease (AD) (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) and demonstrated changes in PACAP-regulated signaling pathways. In addition, the effects of increased physical activity of AD (trained AD (TAD)) mice on testis were also followed. Reduced cell number and decreased thickness of basement membrane were detected in AD samples. These changes were compensated by physical activity. Expression of PACAP receptors and canonical signaling elements such as PKA, P-PKA, PP2A significantly decreased in AD mice, and altered Sox transcription factor expression was also detected. Via this signaling mechanism, physical activity compensated the negative effects of AD on the expression of type IV collagen. Our findings suggest that the testes of AD mice can be a good model of testis degeneration. Moreover, it can be an appropriate organ to follow the effects of various interventions such as physical activity on tissue regeneration and signaling alterations.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Transdução de Sinais/genética , Doenças Testiculares/metabolismo , Testículo/metabolismo , Animais , Contagem de Células , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Condicionamento Físico Animal , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Fatores de Transcrição SOX9/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/patologia
13.
Medicine (Baltimore) ; 99(7): e17763, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32049775

RESUMO

Unstable distal metaphyseal and dia-metaphyseal fractures of the radius may have treated with a variety of operative techniques, Kirschner wires (K-wires), dorsally inserted titanium elastic stable intramedullary nailing (DESIN), and short titanium elastic stable intramedullary nailing (SESIN) in children.The aim of this study was to evaluate the differences in clinical and radiographic outcomes between these methods.Between January 2009 and December 2017 196 children were treated for forearm fractures in the distal third of the distal radius. Gender of the patients, different types of surgical techniques, number of postoperative X-rays, date of metal removal and degree of axis deviation after the metal removal were studied. Distance of the fracture line from the radiocarpal surface, the width of the distal epiphysis of the radius, and the cumulative width of the distal epiphysis of the ulna and radius were analyzed.Out of the 196 children, stabilization of the fracture was achieved by K-wire in 139, by DESIN in 44, and by SESIN in 13 patients. The average time of metal removal was significantly shorter (3.8 months), following stabilization with K-wire. In children treated with K-wire, axial deviation of <5° was seen in 118 patients, 5° to 10° deviation in 15 patients, while deviation was above 10° in 6 children. In the DESIN group, <5° axial deviation was found in 37 patients and 5° to 10° in seven patients. In all 13 children treated with SESIN, axial deviation was measured to be <5°. The fracture distance from the radiocarpal surface was on average 23.7 and 45.6 mm in the children treated with K-wire and DESIN, respectively.Fracture distance from the radiocarpal surface might determine the type of surgical technique required. If the distance of the fracture line is less than the width of the distal radius, osteosynthesis with a K-wire is recommended, while if the distance of the fracture is more than the cumulative width of the radius and the ulna, then DESIN may provide better results. The use of SESIN may be indicated when the area of the growth plate is injured.


Assuntos
Fixação de Fratura/instrumentação , Fraturas do Rádio/cirurgia , Fraturas da Ulna/cirurgia , Fios Ortopédicos , Remoção de Dispositivo/estatística & dados numéricos , Feminino , Fixação Intramedular de Fraturas/instrumentação , Humanos , Masculino , Radiografia , Fraturas do Rádio/diagnóstico por imagem , Estudos Retrospectivos , Resultado do Tratamento , Fraturas da Ulna/diagnóstico por imagem
14.
Minerva Cardioangiol ; 68(3): 261-267, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32100986

RESUMO

BACKGROUND: Renal dysfunction, an important predictor of cardiovascular mortality, is paradoxically associated with a lower incidence of positive coronary fractional flow reserve (FFR) values, possibly due to renal disease-associated myocardial microvascular dysfunction. It is unknown if this relationship is influenced by arterial hypertension, a condition strongly associated with renal- and microvascular dysfunction. METHODS: The incidence of positive (<0.81) FFR values was retrospectively evaluated in consecutive patients with intermediate severity coronary artery lesions that were either associating or not associating renal dysfunction (creatinine clearance, CrCl <90 mL/min/1.73 m2), and had mild/moderate or severe arterial hypertension (treated by <3 or ≥3 different drugs). RESULTS: Positive FFR values were found in 49.5% of the 109 included patients, with a significantly lower incidence in those with renal dysfunction: 23 vs. 31 cases (39.7% vs. 60.8%, P=0.03). However, uni- and multivariate subpopulation analysis evidenced that renal dysfunction was a significant independent predictor of fewer positive FFR results only in severely hypertensive patients (univariate P values for mild/moderate and severe hypertension: 0.80 and <0.01, respectively; multivariate P in severely hypertensive patients: 0.04). This categorization significantly restricted the number of borderline FFR results (0.75-0.80) where measurement interpretation could be challenging because of renal dysfunction (from 13.8% to 4.6% of the whole study population, P=0.03). CONCLUSIONS: In the current study renal dysfunction was independently associated with a significantly higher incidence of negative FFR results in patients with intermediate severity coronary artery lesions only in the presence of severe arterial hypertension. This observation should be confirmed by large-scale prospective clinical trials.


Assuntos
Doença da Artéria Coronariana/fisiopatologia , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Hipertensão/fisiopatologia , Insuficiência Renal/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anti-Hipertensivos/administração & dosagem , Feminino , Humanos , Hipertensão/tratamento farmacológico , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença
15.
Cell Commun Signal ; 17(1): 166, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842918

RESUMO

BACKGROUND: In vitro chondrogenesis depends on the concerted action of numerous signalling pathways, many of which are sensitive to the changes of intracellular Ca2+ concentration. N-methyl-D-aspartate (NMDA) glutamate receptor is a cation channel with high permeability for Ca2+. Whilst there is now accumulating evidence for the expression and function of NMDA receptors in non-neural tissues including mature cartilage and bone, the contribution of glutamate signalling to the regulation of chondrogenesis is yet to be elucidated. METHODS: We studied the role of glutamatergic signalling during the course of in vitro chondrogenesis in high density chondrifying cell cultures using single cell fluorescent calcium imaging, patch clamp, transient gene silencing, and western blotting. RESULTS: Here we show that key components of the glutamatergic signalling pathways are functional during in vitro chondrogenesis in a primary chicken chondrogenic model system. We also present the full glutamate receptor subunit mRNA and protein expression profile of these cultures. This is the first study to report that NMDA-mediated signalling may act as a key factor in embryonic limb bud-derived chondrogenic cultures as it evokes intracellular Ca2+ transients, which are abolished by the GluN2B subunit-specific inhibitor ifenprodil. The function of NMDARs is essential for chondrogenesis as their functional knock-down using either ifenprodil or GRIN1 siRNA temporarily blocks the differentiation of chondroprogenitor cells. Cartilage formation was fully restored with the re-expression of the GluN1 protein. CONCLUSIONS: We propose a key role for NMDARs during the transition of chondroprogenitor cells to cartilage matrix-producing chondroblasts.


Assuntos
Condrogênese/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Cálcio/análise , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Galinhas , Condrogênese/efeitos dos fármacos , Ácido Glutâmico/análise , N-Metilaspartato/farmacologia , Receptores de N-Metil-D-Aspartato/agonistas , Transdução de Sinais/efeitos dos fármacos
16.
Cancers (Basel) ; 12(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861350

RESUMO

Keratinocytes provide the first line of defense of the human body against carcinogenic ultraviolet (UV) radiation. Acute and chronic UVB-mediated cellular responses were widely studied. However, little is known about the role of mitochondrial regulation in UVB-induced DNA damage. Here, we show that poly (ADP-ribose) polymerase 1 (PARP1) and ataxia-telangiectasia-mutated (ATM) kinase, two tumor suppressors, are important regulators in mitochondrial alterations induced by UVB. Our study demonstrates that PARP inhibition by ABT-888 upon UVB treatment exacerbated cyclobutane pyrimidine dimers (CPD) accumulation, cell cycle block and cell death and reduced cell proliferation in premalignant skin keratinocytes. Furthermore, in human keratinocytes UVB enhanced oxidative phosphorylation (OXPHOS) and autophagy which were further induced upon PARP inhibition. Immunoblot analysis showed that these cellular responses to PARP inhibition upon UVB irradiation strongly alter the phosphorylation level of ATM, adenosine monophosphate-activated kinase (AMPK), p53, protein kinase B (AKT), and mammalian target of rapamycin (mTOR) proteins. Furthermore, chemical inhibition of ATM led to significant reduction in AMPK, p53, AKT, and mTOR activation suggesting the central role of ATM in the UVB-mediated mitochondrial changes. Our results suggest a possible link between UVB-induced DNA damage and metabolic adaptations of mitochondria and reveal the OXPHOS-regulating role of autophagy which is dependent on key metabolic and DNA damage regulators downstream of PARP1 and ATM.

17.
Geroscience ; 41(6): 775-793, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31655957

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is an evolutionarly conserved neuropeptide which is produced by various neuronal and non-neuronal cells, including cartilage and bone cells. PACAP has trophic functions in tissue development, and it also plays a role in cellular and tissue aging. PACAP takes part in the regulation of chondrogenesis, which prevents insufficient cartilage formation caused by oxidative and mechanical stress. PACAP knockout (KO) mice have been shown to display early aging signs affecting several organs. In the present work, we investigated articular cartilage of knee joints in young and aged wild-type (WT) and PACAP KO mice. A significant increase in the thickness of articular cartilage was detected in aged PACAP gene-deficient mice. Amongst PACAP receptors, dominantly PAC1 receptor was expressed in WT knee joints and a remarkable decrease was found in aged PACAP KO mice. Expression of PKA-regulated transcription factors, Sox5, Sox9 and CREB, decreased both in young and aged gene deficient mice, while Sox6, collagen type II and aggrecan expressions were elevated in young but were reduced in aged PACAP KO animals. Increased expression of hyaluronan (HA) synthases and HA-binding proteins was detected parallel with an elevated presence of HA in aged PACAP KO mice. Expression of bone related collagens (I and X) was augmented in young and aged animals. These results suggest that loss of PACAP signaling results in dysregulation of cartilage matrix composition and may transform articular cartilage in a way that it becomes more prone to degenerate.


Assuntos
Envelhecimento/metabolismo , Cartilagem Articular/metabolismo , Condrogênese/fisiologia , Regulação da Expressão Gênica , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Animais , Western Blotting , Cartilagem Articular/patologia , DNA/genética , Modelos Animais de Doenças , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/biossíntese , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Transdução de Sinais
18.
PLoS One ; 14(1): e0211433, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682157

RESUMO

BACKGROUND: PACAP and VIP are closely related neuropeptides with wide distribution and potent effect in the vasculature. We previously reported vasomotor activity in peripheral vasculature of male wild type (WT) and PACAP-deficient (KO) mice. However, female vascular responses are still unexplored. We hypothesized that PACAP-like activity is maintained in female PACAP KO mice and the mechanism through which it is regulated differs from that of male PACAP KO animals. METHODS: We investigated the vasomotor effects of VIP and PACAP isoforms and their selective blockers in WT and PACAP KO female mice in carotid and femoral arteries. The expression and level of different PACAP receptors in the vessels were measured by RT-PCR and Western blot. RESULTS: In both carotid and femoral arteries of WT mice, PACAP1-38, PACAP1-27 or VIP induced relaxation, without pronounced differences between them. Reduced relaxation was recorded only in the carotid arteries of KO mice as compared to their WT controls. The specific VPAC1R antagonist completely blocked the PACAP/VIP-induced relaxation in both arteries of all mice, while PAC1R antagonist affected relaxation only in their femoral arteries. CONCLUSION: In female WT mice, VPAC1 receptors appear to play a dominant role in PACAP-induced vasorelaxation both in carotid and in femoral arteries. In the PACAP KO group PAC1R activation exerts vasorelaxation in the femoral arteries but in carotid arteries there is no significant effect of the activation of this receptor. In the background of this regional difference, decreased PAC1R and increased VPAC1R availability in the carotid arteries was found.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Vasodilatação , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/fisiologia , Feminino , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/fisiologia , Proteínas de Insetos/farmacologia , Camundongos , Camundongos Knockout , Nitroprussiato/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/antagonistas & inibidores , Peptídeo Intestinal Vasoativo/farmacologia , Vasodilatação/efeitos dos fármacos
19.
Int J Mol Sci ; 20(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621194

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide also secreted by non-neural cells, including chondrocytes. PACAP signaling is involved in the regulation of chondrogenesis, but little is known about its connection to matrix turnover during cartilage formation and under cellular stress in developing cartilage. We found that the expression and activity of hyaluronidases (Hyals), matrix metalloproteinases (MMP), and aggrecanase were permanent during the course of chondrogenesis in primary chicken micromass cell cultures, although protein levels changed daily, along with moderate and relatively constant enzymatic activity. Next, we investigated whether PACAP influences matrix destructing enzyme activity during oxidative and mechanical stress in chondrogenic cells. Exogenous PACAP lowered Hyals and aggrecanase expression and activity during cellular stress. Expression and activation of the majority of cartilage matrix specific MMPs such as MMP1, MMP7, MMP8, and MMP13, were also decreased by PACAP addition upon oxidative and mechanical stress, while the activity of MMP9 seemed not to be influenced by the neuropeptide. These results suggest that application of PACAP can help to preserve the integrity of the newly synthetized cartilage matrix via signaling mechanisms, which ultimately inhibit the activity of matrix destroying enzymes under cellular stress. It implies the prospect that application of PACAP can ameliorate articular cartilage destruction in joint diseases.


Assuntos
Proteínas Reguladoras de Apoptose/farmacologia , Condrócitos/efeitos dos fármacos , Estresse Oxidativo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Estresse Mecânico , Animais , Proteínas Reguladoras de Apoptose/administração & dosagem , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Técnicas de Cultura de Células , Embrião de Galinha , Condrócitos/metabolismo , Endopeptidases/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Hialuronoglucosaminidase/metabolismo , Peróxido de Hidrogênio/farmacologia , Metaloproteinases da Matriz/metabolismo , Oxidantes/farmacologia
20.
J Mol Neurosci ; 68(3): 408-419, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30443839

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts general cytoprotective effects, including protection in different kidney disorders. The aim of our study was to investigate the ischemia/reperfusion-induced kidney injury of male and female rats to confirm the protective effects of PACAP in the kidney and to reveal possible gender differences.Male and female Wistar rats underwent unilateral renal artery clamping followed by 24-h, 48-h, or 14-day reperfusion. PACAP was administered intravenously before arterial clamping in half of the rats. Tubular damage, cytokine expression pattern, oxidative stress marker, antioxidative status and signaling pathways were evaluated using histology, immunohistology, cytokine array, PCR, and Western blot. Tubular damage was significantly less severe in the PACAP-treated male and female rats compared to controls. Results of female animals were significantly better in both treated and untreated groups. Cytokine expression, oxidative stress marker and antioxidative status confirmed the histological results. We also revealed that PACAP counteracted the decreased PKA phosphorylation, influenced the expression of BMP2 and BMP4, and increased the expression of the protein Smad1.We conclude that PACAP is protective in ischemia/reperfusion-induced kidney injury in both sexes, but females had markedly less pronounced injury after ischemia/reperfusion, possibly also involving further protective factors, the investigation of which could have future therapeutic value in treating ischemic kidney injuries.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Rim/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Injúria Renal Aguda/etiologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinas/sangue , Feminino , Rim/irrigação sanguínea , Rim/metabolismo , Masculino , Estresse Oxidativo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/complicações , Fatores Sexuais , Proteína Smad1/genética , Proteína Smad1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...