Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Ecol Evol ; 14(6): e11491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38855314

RESUMO

The size and growth patterns of nestling birds are key determinants of their survival up to fledging and long-term fitness. However, because traits such as feathers, skeleton and body mass can follow different developmental trajectories, our understanding of the impact of adverse weather on development requires insights into trait-specific sensitive developmental windows. We analysed data from nestling Alpine swifts in Switzerland measured throughout growth up to the age of 50 days (i.e. fledging between 50 and 70 days), for wing length and body mass (2693 nestlings in 25 years) and sternum length (2447 nestlings in 22 years). We show that the sensitive developmental windows for wing and sternum length corresponded to the periods of trait-specific peak growth, which span almost the whole developmental period for wings and the first half for the sternum. Adverse weather conditions during these periods slowed down growth and reduced size. Although nestling body mass at 50 days showed the greatest inter-individual variation, this was explained by weather in the two days before measurement rather than during peak growth. Interestingly, the relationship between temperature and body mass was not linear, and the initial sharp increase in body mass associated with the increase in temperature was followed by a moderate drop on hot days, likely linked to heat stress. Nestlings experiencing adverse weather conditions during wing growth had lower survival rates up to fledging and fledged at later ages, presumably to compensate for slower wing growth. Overall, our results suggest that measures of feather growth and, to some extent, skeletal growth best capture the consequences of adverse weather conditions throughout the whole development of offspring, while body mass better reflects the short, instantaneous effects of weather conditions on their body reserves (i.e. energy depletion vs. storage in unfavourable vs. favourable conditions).

2.
Mol Psychiatry ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704507

RESUMO

Schizophrenia affects approximately 1% of the world population. Genetics, epigenetics, and environmental factors are known to play a role in this psychiatric disorder. While there is a high concordance in monozygotic twins, about half of twin pairs are discordant for schizophrenia. To address the question of how and when concordance in monozygotic twins occur, we have obtained fibroblasts from two pairs of schizophrenia discordant twins (one sibling with schizophrenia while the second one is unaffected by schizophrenia) and three pairs of healthy twins (both of the siblings are healthy). We have prepared iPSC models for these 3 groups of patients with schizophrenia, unaffected co-twins, and the healthy twins. When the study started the co-twins were considered healthy and unaffected but both the co-twins were later diagnosed with a depressive disorder. The reprogrammed iPSCs were differentiated into hippocampal neurons to measure the neurophysiological abnormalities in the patients. We found that the neurons derived from the schizophrenia patients were less arborized, were hypoexcitable with immature spike features, and exhibited a significant reduction in synaptic activity with dysregulation in synapse-related genes. Interestingly, the neurons derived from the co-twin siblings who did not have schizophrenia formed another distinct group that was different from the neurons in the group of the affected twin siblings but also different from the neurons in the group of the control twins. Importantly, their synaptic activity was not affected. Our measurements that were obtained from schizophrenia patients and their monozygotic twin and compared also to control healthy twins point to hippocampal synaptic deficits as a central mechanism in schizophrenia.

3.
J Anim Ecol ; 93(5): 567-582, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400559

RESUMO

In most animals, body mass varies with ecological conditions and is expected to reflect how much energy can be allocated to reproduction and survival. Because the sexes often differ in their resource acquisition and allocation strategies, variations in adult body mass and their consequences on fitness can differ between the sexes. Assessing the relative contributions of environmental and genetic effects (i.e. heritability)-and whether these effects and their fitness consequences are sex-specific-is essential to gain insights into the evolution of sexual dimorphism and sexual conflicts. We used 20+ years of data to study the sources of variation in adult body mass and associated fitness consequences in a bird with biparental care, the Alpine swift (Tachymarptis melba). Swifts appear monomorphic to human observers, though subtle dimorphisms are present. We first investigated the effects of weather conditions on adult body mass using a sliding window analysis approach. We report a positive effect of temperature and a negative effect of rainfall on adult body mass, as expected for an aerial insectivorous bird. We then quantified the additive genetic variance and heritability of body mass in both sexes and assessed the importance of genetic constraints on mass evolution by estimating the cross-sex genetic correlation. Heritability was different from zero in both sexes at ~0.30. The positive cross-sex genetic correlation and comparable additive genetic variance between the sexes suggest the possibility for evolutionary constraints when it comes to body mass. Finally, we assessed the sex-specific selection on adjusted body mass using multiple fitness components. We report directional positive and negative selection trending towards stabilizing and diversifying selection on females and males respectively in relation to the weighted proportion of surviving fledglings. Overall, these results suggest that while body mass may be able to respond to environmental conditions and evolve, genetic constraints would result in similar changes in both sexes or an overall absence of response to selection. It remains unclear whether the weak (1%) dimorphism in Alpine swift body mass we report is simply a result of the similar fitness peaks between the sexes or of genetic constraints.


Assuntos
Aves , Seleção Genética , Caracteres Sexuais , Animais , Masculino , Feminino , Aves/genética , Aves/fisiologia , Peso Corporal
4.
Am Nat ; 203(1): 109-123, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207133

RESUMO

AbstractSampling, investing time or energy to learn about the environment, allows organisms to track changes in resource distribution and quality. The use of sampling is predicted to change as a function of energy expenditure, food availability, and starvation risk, all of which can vary both within and among individuals. We studied sampling behavior in a field study with black-capped chickadees (Poecile atricapillus) and show that individuals adjust their use of sampling as a function of ambient temperature (a proxy for energy expenditure), the presence of an alternative food source (yes or no, a proxy for risk of energy shortfall), and their interaction, as predicted by models of optimal sampling. We also observed repeatable differences in sampling. Some individuals consistently sampled more, and individuals that sampled more overall also had a higher annual survival. These results are consistent with among-individual differences in resource acquisition (e.g., food caches or dominance-related differences in priority access to feeders), shaping among-individual differences in both sampling and survival, with greater resource acquisition leading to both higher sampling and higher survival. Although this explanation requires explicit testing, it is in line with several recent studies suggesting that variation in resource acquisition is a key mechanism underlying animal personality.


Assuntos
Aves Canoras , Humanos , Animais , Aprendizagem
5.
Ecology ; 105(2): e4215, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037245

RESUMO

Dispersal contributes vitally to metacommunity structure. However, interactions between dispersal and other key processes have rarely been explored, particularly in the context of multitrophic metacommunities. We investigated such a metacommunity in naturally fragmented habitats populated by butterfly species (whose dispersal capacities were previously assessed), flowering plants, and butterfly predators. Using data on butterfly species abundance, floral abundance, and predation (on experimentally placed clay butterfly models), we asked how dispersal ability mediates interactions with predators, mutualists, and the landscape matrix. In contrast to expectations, high densities of strong dispersers were found in more isolated sites and sites with low floral resource density, while intermediate dispersers maintained similar densities across isolation and floral gradients, and higher densities of poor dispersers were found in more connected sites and sites with higher floral density. These findings raise questions about how strong dispersers experience the landscape matrix and the quality of isolated and low-resource sites. Strong dispersers were able to escape habitat patches with high predation, while intermediate dispersers maintained similar densities along a predation gradient, and poor dispersers occurred at high densities in these patches, exposing them to interactions with predators. This work demonstrates that species that vary in dispersal capacities interact differently with predators and mutualist partners in a landscape context, shaping metacommunity composition.


Assuntos
Distribuição Animal , Ecossistema , Dispersão Vegetal , Lepidópteros , Animais
6.
Ecol Evol ; 13(12): e10780, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077518

RESUMO

With global climates changing rapidly, animals must adapt to new environmental conditions with altered weather and phenology. The key to adapting to these new conditions is adjusting the timing of reproduction to maximize fitness. Using a long-term dataset on a wild population of yellow-bellied marmots (Marmota flaviventer) at the Rocky Mountain Biological Laboratory (RMBL), we investigated how the timing of reproduction changed with changing spring conditions over the past 50 years. Marmots are hibernators with a 4-month active season. It is thus crucial to reproduce early enough in the season to have time to prepare for hibernation, but not too early, as snow cover prevents access to food. Importantly, climate change in this area has, on average, increased spring temperatures by 5°C and decreased spring snowpack by 50 cm over the past 50 years. We evaluated how female marmots adjust the timing of their reproduction in response to changing conditions and estimated the importance of both microevolution and plasticity in the variation in this timing. We showed that, within a year, the timing of reproduction is not as tightly linked to the date a female emerges from hibernation as previously thought. We reported a positive effect of spring snowpack but not of spring temperature on the timing of reproduction. We found inter-individual variation in the timing of reproduction, including low heritability, but not in its response to changing spring conditions. There was directional selection for earlier reproduction since it increased the number and proportion of pups surviving their first winter. Taken together, the timing of marmot reproduction might evolve via natural selection; however, plastic changes will also be extremely important. Further, future studies on marmots should not operate under the assumption that females reproduce immediately following their emergence.

7.
Sci Adv ; 9(42): eadh8313, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862423

RESUMO

Human-induced pluripotent stem cells (hiPSCs) have emerged as a promising in vitro model system for studying neurodevelopment. However, current models remain limited in their ability to incorporate tunable biomechanical signaling cues imparted by the extracellular matrix (ECM). The native brain ECM is viscoelastic and stress-relaxing, exhibiting a time-dependent response to an applied force. To recapitulate the remodelability of the neural ECM, we developed a family of protein-engineered hydrogels that exhibit tunable stress relaxation rates. hiPSC-derived neural progenitor cells (NPCs) encapsulated within these gels underwent relaxation rate-dependent maturation. Specifically, NPCs within hydrogels with faster stress relaxation rates extended longer, more complex neuritic projections, exhibited decreased metabolic activity, and expressed higher levels of genes associated with neural maturation. By inhibiting actin polymerization, we observed decreased neuritic projections and a concomitant decrease in neural maturation gene expression. Together, these results suggest that microenvironmental viscoelasticity is sufficient to bias human NPC maturation.


Assuntos
Hidrogéis , Células-Tronco Neurais , Humanos , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Matriz Extracelular/metabolismo , Neurogênese
8.
Phytopathology ; 113(9): 1708-1715, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37665323

RESUMO

'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited pathogen associated with devastating diseases in members of the Solanaceae and Apiaceae and vectored by several psyllid species. Different Lso haplotypes have been identified, and LsoA and LsoB are responsible for diseases in Solanaceae crops. Our efforts are aimed at identifying pathogenicity factors used by this bacterium to thrive in different hosts. Bacterial secreted proteins can play a role in host colonization or the manipulation of the host immune responses; these proteins are called effectors. In this study, we identified six LsoB-specific proteins with a conserved secretion motif as well as a conserved N-terminal domain in the mature protein. These proteins had different expression and secretion patterns but a similar subcellular localization in Nicotiana benthamiana leaves, suggesting that they play different roles regardless of their conserved secretion motif. One of these proteins, CKC_04425, was expressed at high levels in the insect vector and the host plant, indicating that it could play a role in both the plant and insect hosts, whereas the others were mainly expressed in the plant. One protein, CKC_05701, was able to efficiently suppress programmed cell death and reactive oxygen species production, suggesting that it may have a virulence role in LsoB-specific pathogenesis.


Assuntos
Hemípteros , Rhizobiaceae , Animais , Liberibacter , Haplótipos , Doenças das Plantas/microbiologia , Hemípteros/microbiologia , Produtos Agrícolas , Rhizobiaceae/fisiologia
9.
Nat Commun ; 14(1): 4346, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468483

RESUMO

The biofabrication of three-dimensional (3D) tissues that recapitulate organ-specific architecture and function would benefit from temporal and spatial control of cell-cell interactions. Bioprinting, while potentially capable of achieving such control, is poorly suited to organoids with conserved cytoarchitectures that are susceptible to plastic deformation. Here, we develop a platform, termed Spatially Patterned Organoid Transfer (SPOT), consisting of an iron-oxide nanoparticle laden hydrogel and magnetized 3D printer to enable the controlled lifting, transport, and deposition of organoids. We identify cellulose nanofibers as both an ideal biomaterial for encasing organoids with magnetic nanoparticles and a shear-thinning, self-healing support hydrogel for maintaining the spatial positioning of organoids to facilitate the generation of assembloids. We leverage SPOT to create precisely arranged assembloids composed of human pluripotent stem cell-derived neural organoids and patient-derived glioma organoids. In doing so, we demonstrate the potential for the SPOT platform to construct assembloids which recapitulate key developmental processes and disease etiologies.


Assuntos
Bioimpressão , Células-Tronco Pluripotentes , Humanos , Organoides , Bioimpressão/métodos , Hidrogéis , Materiais Biocompatíveis
10.
Environ Monit Assess ; 195(7): 872, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351694

RESUMO

In this review, we depict the state of the art concerning the water quality management of bio-mineral bathing pools, and compare these to traditional swimming pools. Bio-mineral pools use a combination of mechanic filtration, bio-filtration, and UV-treatment to disinfect the water. Studies in test tanks have shown that bio-filtration is effective in maintaining the water quality with regard to the treatment of organic pollution. Concerning biological risks, the bio-mineral pool relies on UV-treatment to degrade bacteria. Unlike chemical disinfectant treatments, UV disinfection does not lose its effectiveness in the event of high traffic in the pool. However, as only the water taken up by the filtration system is disinfected, it is essential that all the water in the pool is filtered. If the pool has a dead zone, its water is not disinfected and there is a risk of localized pathogen development. As the development of bio-mineral pools spreads in Europe, legislation gradually follows. The health parameters measured differ slightly from one country to another, but there are constants: the measurement of Escherichia coli, Enterococci, and Pseudomonas aeruginosa. In terms of biological swimming pools, regulatory homogeneity across Europe does not exist. From these comparisons, Austrian legislation segmenting water quality into 4 categories ranging from "excellent" to "poor" represents legislation that combines health and safety with indications of possible malfunctions. Next, a study of three real sites of bio-mineral pools is presented. It appears that whatever the type of pool, bio-mineral filtration makes it possible to achieve performances comparable to those encountered in chlorinated swimming pools concerning the risks associated with fecal contamination and external pollution. On the other hand, when frequentation is high, as is the case in small pools used for aquafitness, monitoring the risks of inter-bather contamination, as illustrated by the presence of Staphylococcus aureus, reveals a recurring problem. Knowing that this parameter is not evaluated in bathing waters in the natural environment and that numerous studies show that Staphyloccocus aureus are always detected, even on beaches, we propose the definition of three thresholds: i.e., 0 CFU/100 mL (threshold value in Wallonia) for water of excellent quality, less than 20 CFU/100 mL (threshold value in France) for water of very good quality, less than 50 CFU/100 mL (contribution of bathers by simple immersion) for good quality water, and more than 50 CFU/100 mL for poor quality water. This document could therefore be converted into a manual for operators on the use and management of bio-mineral baths.


Assuntos
Desinfetantes , Piscinas , Qualidade da Água , Monitoramento Ambiental , Desinfetantes/análise , Desinfecção , Europa (Continente) , Escherichia coli , Microbiologia da Água
11.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066190

RESUMO

While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self-supporting, branched networks with multiple channel diameters is particularly challenging. Here, we present the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE-3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes. To achieve user-specified channel dimensions, this technique leverages the predictable diffusion of crosslinking reaction-initiators released from sacrificial inks printed within a hydrogel precursor. We demonstrate the versatility of GUIDE-3DP to be adapted for use with diverse physiochemical crosslinking mechanisms by designing seven printable material systems. Importantly, GUIDE-3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, we demonstrate the fabrication of vasculature-like networks lined with endothelial cells. GUIDE-3DP represents an important advance toward the fabrication of self-supporting, physiologically relevant networks with intricate and perfusable geometries.

12.
Gels ; 9(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37102887

RESUMO

Monometallic catalysts based on Fe, Ni and Pd, as well as bimetallic catalysts based on Fe-Pd and based on Ni-Pd supported on silica, were synthesized using a sol-gel cogelation process. These catalysts were tested in chlorobenzene hydrodechlorination at low conversion to consider a differential reactor. In all samples, the cogelation method allowed very small metallic nanoparticles of 2-3 nm to be dispersed inside the silica matrix. Nevertheless, the presence of some large particles of pure Pd was noted. The catalysts had specific surface areas between 100 and 400 m2/g. In view of the catalytic results obtained, the Pd-Ni catalysts are less active than the monometallic Pd catalyst (<6% of conversion) except for catalysts with a low proportion of Ni (9% of conversion) and for reaction temperatures above 240 °C. In this series of catalysts, increasing the Ni content increases the activity but leads to an amplification of the catalyst deactivation phenomenon compared to Pd alone. On the other hand, Pd-Fe catalysts are more active with a double conversion value compared to a Pd monometallic catalyst (13% vs. 6%). The difference in the results obtained for each of the catalysts in the Pd-Fe series could be explained by the greater presence of the Fe-Pd alloy in the catalyst. Fe would have a cooperative effect when associated with Pd. Although Fe is inactive alone for chlorobenzene hydrodechlorination, when Fe is coupled to another metal from the group VIIIb, such as Pd, it allows the phenomenon of Pd poisoning by HCl to be reduced.

13.
J Biomed Mater Res A ; 111(7): 896-909, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36861665

RESUMO

Mechanical cues from the extracellular matrix (ECM) regulate vascular endothelial cell (EC) morphology and function. Since naturally derived ECMs are viscoelastic, cells respond to viscoelastic matrices that exhibit stress relaxation, in which a cell-applied force results in matrix remodeling. To decouple the effects of stress relaxation rate from substrate stiffness on EC behavior, we engineered elastin-like protein (ELP) hydrogels in which dynamic covalent chemistry (DCC) was used to crosslink hydrazine-modified ELP (ELP-HYD) and aldehyde/benzaldehyde-modified polyethylene glycol (PEG-ALD/PEG-BZA). The reversible DCC crosslinks in ELP-PEG hydrogels create a matrix with independently tunable stiffness and stress relaxation rate. By formulating fast-relaxing or slow-relaxing hydrogels with a range of stiffness (500-3300 Pa), we examined the effect of these mechanical properties on EC spreading, proliferation, vascular sprouting, and vascularization. The results show that both stress relaxation rate and stiffness modulate endothelial spreading on two-dimensional substrates, on which ECs exhibited greater cell spreading on fast-relaxing hydrogels up through 3 days, compared with slow-relaxing hydrogels at the same stiffness. In three-dimensional hydrogels encapsulating ECs and fibroblasts in coculture, the fast-relaxing, low-stiffness hydrogels produced the widest vascular sprouts, a measure of vessel maturity. This finding was validated in a murine subcutaneous implantation model, in which the fast-relaxing, low-stiffness hydrogel produced significantly more vascularization compared with the slow-relaxing, low-stiffness hydrogel. Together, these results suggest that both stress relaxation rate and stiffness modulate endothelial behavior, and that the fast-relaxing, low-stiffness hydrogels supported the highest capillary density in vivo.


Assuntos
Elastina , Hidrogéis , Camundongos , Animais , Elastina/química , Hidrogéis/química , Células Endoteliais , Matriz Extracelular/química , Materiais Biocompatíveis/farmacologia
14.
Behav Ecol ; 34(2): 210-222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998994

RESUMO

Repeated social interactions with conspecifics and/or heterospecifics during early development may drive the differentiation of behavior among individuals. Competition is a major form of social interaction and its impacts can depend on whether interactions occur between conspecifics or heterospecifics and the directionality of a response could be specific to the ecological context that they are measured in. To test this, we reared tungara frog tadpoles (Engystomops pustulosus) either in isolation, with a conspecific tadpole or with an aggressive heterospecific tadpole, the whistling frog tadpole (Leptodactylus fuscus). In each treatment, we measured the body size and distance focal E. pustulosus tadpoles swam in familiar, novel and predator risk contexts six times during development. We used univariate and multivariate hierarchical mixed effect models to investigate the effect of treatment on mean behavior, variance among and within individuals, behavioral repeatability and covariance among individuals in their behavior between contexts. There was a strong effect of competition on behavior, with different population and individual level responses across social treatments. Within a familiar context, the variance in the distance swam within individuals decreased under conspecific competition but heterospecific competition caused more variance in the average distance swam among individuals. Behavioral responses were also context specific as conspecific competition caused an increase in the distance swam within individuals in novel and predator risk contexts. The results highlight that the impact of competition on among and within individual variance in behavior is dependent on both competitor species identity and context.

15.
Cell Stem Cell ; 30(2): 115-117, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736286

RESUMO

The maturation of human induced pluripotent stem cell (hiPSC)-derived neurons in 2D is dependent upon cell attachment, spreading, and pathfinding across a biomaterial substrate. In this issue of Cell Stem Cell, Álvarez et al.1 demonstrate that highly mobile supramolecular scaffolds facilitate long-term hiPSC-derived motor neuron culture, increase maturation-related phenotypes, and recapitulate disease-relevant pathologies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células Cultivadas , Diferenciação Celular/genética , Neurônios Motores
16.
Proc Biol Sci ; 290(1990): 20222181, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629105

RESUMO

The timing of life events (phenology) can be influenced by climate. Studies from around the world tell us that climate cues and species' responses can vary greatly. If variation in climate effects on phenology is strong within a single ecosystem, climate change could lead to ecological disruption, but detailed data from diverse taxa within a single ecosystem are rare. We collated first sighting and median activity within a high-elevation environment for plants, insects, birds, mammals and an amphibian across 45 years (1975-2020). We related 10 812 phenological events to climate data to determine the relative importance of climate effects on species' phenologies. We demonstrate significant variation in climate-phenology linkage across taxa in a single ecosystem. Both current and prior climate predicted changes in phenology. Taxa responded to some cues similarly, such as snowmelt date and spring temperatures; other cues affected phenology differently. For example, prior summer precipitation had no effect on most plants, delayed first activity of some insects, but advanced activity of the amphibian, some mammals, and birds. Comparing phenological responses of taxa at a single location, we find that important cues often differ among taxa, suggesting that changes to climate may disrupt synchrony of timing among taxa.


Assuntos
Ecossistema , Insetos , Animais , Mudança Climática , Estações do Ano , Temperatura , Aves , Mamíferos
17.
Ecology ; 104(3): e3894, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36208282

RESUMO

The fate of natural populations is mediated by complex interactions among vital rates, which can vary within and among years. Although the effects of random, among-year variation in vital rates have been studied extensively, relatively little is known about how periodic, nonrandom variation in vital rates affects populations. This knowledge gap is potentially alarming as global environmental change is projected to alter common periodic variations, such as seasonality. We investigated the effects of changes in vital-rate periodicity on populations of three species representing different forms of adaptation to periodic environments: the yellow-bellied marmot (Marmota flaviventer), adapted to strong seasonality in snowfall; the meerkat (Suricata suricatta), adapted to inter-annual stochasticity as well as seasonal patterns in rainfall; and the dewy pine (Drosophyllum lusitanicum), adapted to fire regimes and periodic post-fire habitat succession. To assess how changes in periodicity affect population growth, we parameterized periodic matrix population models and projected population dynamics under different scenarios of perturbations in the strength of vital-rate periodicity. We assessed the effects of such perturbations on various metrics describing population dynamics, including the stochastic growth rate, log λS . Overall, perturbing the strength of periodicity had strong effects on population dynamics in all three study species. For the marmots, log λS decreased with increased seasonal differences in adult survival. For the meerkats, density dependence buffered the effects of perturbations of periodicity on log λS . Finally, dewy pines were negatively affected by changes in natural post-fire succession under stochastic or periodic fire regimes with fires occurring every 30 years, but were buffered by density dependence from such changes under presumed more frequent fires or large-scale disturbances. We show that changes in the strength of vital-rate periodicity can have diverse but strong effects on population dynamics across different life histories. Populations buffered from inter-annual vital-rate variation can be affected substantially by changes in environmentally driven vital-rate periodic patterns; however, the effects of such changes can be masked in analyses focusing on inter-annual variation. As most ecosystems are affected by periodic variations in the environment such as seasonality, assessing their contributions to population viability for future global-change research is crucial.


Assuntos
Ecossistema , Incêndios , Periodicidade , Dinâmica Populacional , Crescimento Demográfico
18.
Adv Funct Mater ; 33(50)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38646474

RESUMO

While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self-supporting, branched networks with multiple channel diameters is particularly challenging. Here, we present the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE-3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes. To achieve user-specified channel dimensions, this technique leverages the predictable diffusion of crosslinking reaction-initiators released from sacrificial inks printed within a hydrogel precursor. We demonstrate the versatility of GUIDE-3DP to be adapted for use with diverse physicochemical crosslinking mechanisms by designing seven printable material systems. Importantly, GUIDE-3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, we demonstrate the fabrication of vasculature-like networks lined with endothelial cells. GUIDE-3DP represents an important advance toward the fabrication of self-supporting, physiologically relevant networks with intricate and perfusable geometries.

19.
Front Microbiol ; 13: 937912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966663

RESUMO

Over the past three decades, root organ cultures (ROCs) have been the gold standard method for studying arbuscular mycorrhizal fungi (AMF) under in vitro conditions, and ROCs derived from various plant species have been used as hosts for AM monoxenic cultures. While there is compelling evidence that host identity can significantly modify AMF fitness, there is currently no standardized methodology to assess the performance of ROCs in the propagation of their fungal symbionts. We describe RocTest, a robust methodological approach that models the propagation of AMF in symbiosis with ROCs. The development of extraradical fungal structures and the pattern of sporulation are modeled using cumulative link mixed models and linear mixed models. We demonstrate functionality of RocTest by evaluating the performance of three species of ROCs (Daucus carota, Medicago truncatula, Nicotiana benthamiana) in the propagation of three species of AMF (Rhizophagus clarus, Rhizophagus irregularis, Glomus sp.). RocTest produces a simple graphical output to assess the performance of ROCs and shows that fungal propagation depends on the three-way interaction between ROC, AMF, and time. RocTest makes it possible to identify the best combination of host/AMF for fungal development and spore production, making it an important asset for germplasm collections and AMF research.

20.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887193

RESUMO

'Candidatus Liberibacter asiaticus' (CLas) is a bacterium that causes Huanglongbing, also known as citrus greening, in citrus plants. 'Candidatus Liberibacter solanacearum' (Lso) is a close relative of CLas and in the US it infects solanaceous crops, causing zebra chip disease in potato. Previously, we have identified the Lso hypothetical protein effector 1 (Lso-HPE1). This protein uses a signal peptide for secretion; disrupts programmed cell death; and interacts with tomato RAD23c, d, and e proteins, but not with RAD23a. In this study, we evaluated whether CLIBASIA_00460, the CLas homolog of Lso-HPE1 interacted with citrus RAD23 proteins and disrupted their programmed cell death. Based on the yeast two-hybrid assay results, CLIBASIA_00460 interacted with citrus RAD23c and RAD23d, but not with citrus RAD23b. These results were confirmed using bimolecular fluorescence complementation assays, which showed that these interactions occurred in cell puncta, but not in the nucleus or cytoplasm. Additionally, CLIBASIA_00460 was able to disrupt the PrfD1416V-induced hypersensitive response. Therefore, based on the similar interactions between Lso-HPE1 and CLIBASIA_00460 with the host RAD23 proteins and their ability to inhibit cell death in plants, we propose that these effectors may have similar functions during plant infection.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Solanum lycopersicum , Animais , Citrus/microbiologia , Hemípteros/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas , Rhizobiaceae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...