Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Einstein (Sao Paulo) ; 22: eAO0764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775605

RESUMO

OBJECTIVE: To evaluate the in vitro and in vivo toxicities of polyethylene glycol-coated gold nanoparticles synthesized using a one-step process. METHODS: Gold nanoparticles were prepared via a co-precipitation method using polyethylene glycol, and the synthesis product was characterized. For the in vitro evaluation, a flow cytometry analysis with Annexin V and iodide propidium staining was used to assess cytotoxicity in MG-63 cells labeled with 10, 50, and 100µg/mL of nanoparticle concentration. For the in vivo evaluation, nanoparticles were administered intraperitoneally at a dose of 10mg/kg dose in 10-week-old mice. Toxicity was assessed 24 hours and 7 days after administration via histopathological analysis of various tissues, as well as through renal, hepatic, and hematopoietic evaluations. RESULTS: Synthesized nanoparticles exhibited different hydrodynamic sizes depending on the medium: 51.27±1.62nm in water and 268.12±28.45nm (0 hour) in culture medium. They demonstrated a maximum absorbance at 520nm and a zeta potential of -8.419mV. Cellular viability exceeded 90%, with less than 3% early apoptosis, 6% late apoptosis, and 1% necrosis across all labeling conditions, indicating minimal cytotoxicity differences. Histopathological analysis highlighted the accumulation of nanoparticles in the mesentery; however, no lesions or visible agglomeration was observed in the remaining tissues. Renal, hepatic, and hematopoietic analyses showed no significant differences at any time point. CONCLUSION: Polyethylene glycol-coated gold nanoparticles exhibit extremely low toxicity and high biocompatibility, showing promise for future studies.


Assuntos
Ouro , Nanopartículas Metálicas , Polietilenoglicóis , Polietilenoglicóis/toxicidade , Polietilenoglicóis/química , Ouro/toxicidade , Ouro/química , Animais , Nanopartículas Metálicas/toxicidade , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Apoptose/efeitos dos fármacos , Humanos , Tamanho da Partícula , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Fatores de Tempo
2.
Pharmaceutics ; 16(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543205

RESUMO

Breast cancer (BC) presents a growing global concern, mainly for the female population of working age. Their pathophysiology shows challenges when attempting to ensure conventional treatment efficacy without adverse effects. This study aimed to evaluate the efficacy of magneto-hyperthermia (MHT) therapy associated with supplementation with omega-3 polyunsaturated fatty acid (w-3 PUFA) and engagement in physical training (PT) for the triple-negative BC (TNBC) model. First, we assessed the physicochemical properties of iron oxide nanoparticles (ION) in biological conditions, as well as their heating potential for MHT therapy. Then, a bioluminescence (BLI) evaluation of the best tumor growth conditions in the TNBC model (the quantity of implanted cells and time), as well as the efficacy of MHT therapy (5 consecutive days) associated with the previous administration of 8 weeks of w-3 PUFA and PT, was carried out. The results showed the good stability and potential of ION for MHT using 300 Gauss and 420 kHz. In the TNBC model, adequate tumor growth was observed after 14 days of 2 × 106 cells implantation by BLI. There was a delay in tumor growth in animals that received w-3 and PT and a significant decrease associated with MHT. This pioneering combination therapy approach (MHT, omega-3, and exercise) showed a positive effect on TNBC tumor reduction and demonstrated promise for pre-clinical and clinical studies in the future.

3.
Rev. cuba. med. mil ; 52(1)mar. 2023.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1521973

RESUMO

Introducción: La calidad de vida laboral es un proceso dinámico que favorece el desarrollo humano y el bienestar de los trabajadores, cuya percepción puede determinar el compromiso con su organización. Objetivo: Determinar la relación entre la calidad de vida laboral y el compromiso con el trabajo en el personal de enfermería de un hospital público. Métodos: Estudio transversal realizado en una muestra constituida por 43 enfermeros de un servicio de emergencia, los cuales respondieron el cuestionario de calidad de vida laboral en hospitales públicos y la escala Utrecht de compromiso en el trabajo. Se estimaron frecuencias y porcentaje, medias y desviación estándar. Se utilizó la prueba de correlación de Spearman. Resultados: Los enfermeros presentaron un buen nivel de compromiso en el trabajo (4,70 ± 0,99), la dedicación fue la dimensión mejor valorada, seguida del vigor (4,74 ± 0,85) y absorción (4,59 ± 1,35). La calidad de vida laboral media fue alta (2,18 ± 0,34). El bienestar logrado a través del trabajo fue la dimensión mejor valorada. El compromiso en el trabajo y la calidad de vida laboral tuvieron una relación significativa (rho= 0,875; p≤ 0,001). Conclusiones: La calidad de vida laboral en el personal de enfermería tiene una relación directa y alta con el compromiso.


Introduction: The quality of working life is a dynamic process that favors human development and the well-being of workers, whose perception can determine the commitment to their organization. Objective: To determine the relationship between the quality of working life and the engagement in the nursing staff of a public hospital. Methods: Cross-sectional study carried out in a sample of 43 nurses from an emergency department, who answered the questionnaire of quality of working life in public hospitals and the Utrecht scale of commitment at work. Frequencies and percentage, means and standard deviation were estimated. The Spearman correlation test was used. Results: Nurses presented a good level of commitment at work (4.70 ± 0.99), dedication was the best valued dimension, followed by vigor (4.74 ± 0.85) and absorption (4.59 ± 1.35). The mean quality of working life was high (2.18 ± 0.34). The well-being achieved through work was the dimension best valued. Work engagement and quality of working life had a significant relationship (rho= 0.875; p≤ 0.001). Conclusions: The quality of working life in the nursing staff had a direct and high relationship with engagement.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22278592

RESUMO

SARS-CoV-2 infection can result in the development of a constellation of persistent sequelae following acute disease called post-acute sequelae of COVID-19 (PASC) or Long COVID1-3. Individuals diagnosed with Long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions1-3; however, the basic biological mechanisms responsible for these debilitating symptoms are unclear. Here, 215 individuals were included in an exploratory, cross-sectional study to perform multi-dimensional immune phenotyping in conjunction with machine learning methods to identify key immunological features distinguishing Long COVID. Marked differences were noted in specific circulating myeloid and lymphocyte populations relative to matched control groups, as well as evidence of elevated humoral responses directed against SARS-CoV-2 among participants with Long COVID. Further, unexpected increases were observed in antibody responses directed against non-SARS-CoV-2 viral pathogens, particularly Epstein-Barr virus. Analysis of circulating immune mediators and various hormones also revealed pronounced differences, with levels of cortisol being uniformly lower among participants with Long COVID relative to matched control groups. Integration of immune phenotyping data into unbiased machine learning models identified significant distinguishing features critical in accurate classification of Long COVID, with decreased levels of cortisol being the most significant individual predictor. These findings will help guide additional studies into the pathobiology of Long COVID and may aid in the future development of objective biomarkers for Long COVID.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274056

RESUMO

BackgroundThe benefit of vaccination in people who experienced a prior SARS-CoV-2 infection remains unclear. ObjectiveTo estimate the effectiveness of primary (two-dose) and booster (third dose) vaccination against Omicron infection among people with a prior documented infection. DesignTest-negative case-control study. SettingYale New Haven Health System facilities. ParticipantsVaccine eligible people who received SARS-CoV-2 RT-PCR testing between November 1, 2021, and January 31, 2022. MeasurementsWe conducted two analyses, each with an outcome of Omicron BA.1 infection (S-gene target failure defined) and each stratified by prior SARS-CoV-2 infection status. We estimated the effectiveness of primary and booster vaccination. To test whether booster vaccination reduced the risk of infection beyond that of the primary series, we compared the odds among boosted and booster eligible people. ResultsOverall, 10,676 cases and 119,397 controls were included (6.1% and 7.8% occurred following a prior infection, respectively). The effectiveness of primary vaccination 14-149 days after 2nd dose was 36.1% (CI, 7.1% to 56.1%) for people with and 28.5% (CI, 20.0% to 36.2%) without prior infection. The odds ratio comparing boosted and booster eligible people with prior infection was 0.83 (CI, 0.56 to 1.23), whereas the odds ratio comparing boosted and booster eligible people without prior infection was 0.51 (CI, 0.46 to 0.56). LimitationsMisclassification, residual confounding, reliance on TaqPath assay analyzed samples. ConclusionWhile primary vaccination provided protection against BA.1 infection among people with and without prior infection, booster vaccination was only associated with additional protection in people without prior infection. These findings support primary vaccination in people regardless of prior infection status but suggest that infection history should be considered when evaluating the need for booster vaccination. Primary Funding SourceBeatrice Kleinberg Neuwirth and Sendas Family Funds, Merck and Co through their Merck Investigator Studies Program, and the Yale Schools of Public Health and Medicine.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268460

RESUMO

The frequency of SARS-CoV-2 breakthrough infections in fully vaccinated individuals increased with the emergence of the Delta variant, particularly with longer time from vaccine completion. However, whether breakthrough infections lead to onward transmission remains unclear. Here, we conducted a study involving 125 patients comprised of 72 vaccinated and 53 unvaccinated individuals, to assess the levels of infectious virus in vaccinated and unvaccinated individuals. Quantitative plaque assays showed no significant differences in the titers of virus between these cohorts. However, the proportion of nasopharyngeal samples with culturable virus was lower in the vaccinated patients relative to unvaccinated patients (21% vs. 40%). Finally, time-to-event analysis with Kaplan-Myer curves revealed that protection from culturable infectious virus waned significantly starting at 5 months after completing a 2-dose regimen of mRNA vaccines. These results have important implications in timing of booster dose to prevent onward transmission from breakthrough cases.

7.
Cancers (Basel) ; 13(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771745

RESUMO

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260307

RESUMO

The emergence of SARS-CoV-2 variants with mutations in major neutralizing antibody-binding sites can affect humoral immunity induced by infection or vaccination1-6. We analysed the development of anti-SARS-CoV-2 antibody and T cell responses in previously infected (recovered) or uninfected (naive) individuals that received mRNA vaccines to SARS-CoV-2. While previously infected individuals sustained higher antibody titers than uninfected individuals post-vaccination, the latter reached comparable levels of neutralization responses to the ancestral strain than previously infected individuals 7 days after the second vaccine dose. T cell activation markers measured upon spike or nucleocapsid peptide in vitro stimulation showed a progressive increase after vaccination in the time-points analysed. Comprehensive analysis of plasma neutralization using 16 authentic isolates of distinct locally circulating SARS-CoV-2 variants revealed a range of reduction in the neutralization capacity associated with specific mutations in the spike gene: lineages with E484K and N501Y/T (e.g., B.1.351 and P.1) had the greatest reduction, followed by lineages with L452R (e.g., B.1.617.2) or with E484K (without N501Y/T). While both groups retained neutralization capacity against all variants, plasma from previously infected vaccinated individuals displayed overall better neutralization capacity when compared to plasma from uninfected individuals that also received two vaccine doses, pointing to vaccine boosters as a relevant future strategy to alleviate the impact of emerging variants on antibody neutralizing activity.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253992

RESUMO

Prior to the emergence of antigenically distinct SARS-CoV-2 variants, reinfections were reported infrequently - presumably due to the generation of durable and protective immune responses. However, case reports also suggested that rare, repeated infections may occur as soon as 48 days following initial disease onset. The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection - confirmed by whole virus genome sequencing - 7 months after primary infection. To elucidate the immunological mechanisms responsible for SARS-CoV-2 reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses. The patients immune system was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we also identified the development of neutralizing antibodies and the formation of humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation in this patient. In summary, our study suggests that a low neutralizing antibody presence alone is not sufficient to confer resistance against reinfection. Thus, patients with solid organ transplantation, or patients who are otherwise immunosuppressed, who recover from infection with SARS-CoV-2 may not develop sufficient protective immunity and are at risk of reinfection.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21249236

RESUMO

While several clinical and immunological parameters correlate with disease severity and mortality in SARS-CoV-2 infection, work remains in identifying unifying correlates of coronavirus disease 2019 (COVID-19) that can be used to guide clinical practice. Here, we examine saliva and nasopharyngeal (NP) viral load over time and correlate them with patient demographics, and cellular and immune profiling. We found that saliva viral load was significantly higher in those with COVID-19 risk factors; that it correlated with increasing levels of disease severity and showed a superior ability over nasopharyngeal viral load as a predictor of mortality over time (AUC=0.90). A comprehensive analysis of immune factors and cell subsets revealed strong predictors of high and low saliva viral load, which were associated with increased disease severity or better overall outcomes, respectively. Saliva viral load was positively associated with many known COVID-19 inflammatory markers such as IL-6, IL-18, IL-10, and CXCL10, as well as type 1 immune response cytokines. Higher saliva viral loads strongly correlated with the progressive depletion of platelets, lymphocytes, and effector T cell subsets including circulating follicular CD4 T cells (cTfh). Anti-spike (S) and anti-receptor binding domain (RBD) IgG levels were negatively correlated with saliva viral load showing a strong temporal association that could help distinguish severity and mortality in COVID-19. Finally, patients with fatal COVID-19 exhibited higher viral loads, which correlated with the depletion of cTfh cells, and lower production of anti-RBD and anti-S IgG levels. Together these results demonstrated that viral load - as measured by saliva but not nasopharyngeal -- is a dynamic unifying correlate of disease presentation, severity, and mortality over time.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248331

RESUMO

Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). Yet, the exact feature of antibody responses that governs COVID-19 disease outcomes remain unclear. Here, we analysed humoral immune responses in 209 asymptomatic, mild, moderate and severe COVID-19 patients over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-Spike (S) IgG levels, length of hospitalization and clinical parameters associated with worse clinical progression. While high anti-S IgG levels correlated with worse disease severity, such correlation was time-dependent. Deceased patients did not have higher overall humoral response than live discharged patients. However, they mounted a robust, yet delayed response, measured by anti-S, anti-RBD IgG, and neutralizing antibody (NAb) levels, compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, while sera from 89% of patients displayed some neutralization capacity during their disease course, NAb generation prior to 14 days of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se, but rather with the delayed kinetics of NAb production.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20247205

RESUMO

COVID-19 manifests with a wide spectrum of clinical phenotypes that are characterized by exaggerated and misdirected host immune responses1-8. While pathological innate immune activation is well documented in severe disease1, the impact of autoantibodies on disease progression is less defined. Here, we used a high-throughput autoantibody discovery technique called Rapid Extracellular Antigen Profiling (REAP) to screen a cohort of 194 SARS-CoV-2 infected COVID-19 patients and healthcare workers for autoantibodies against 2,770 extracellular and secreted proteins (the "exoproteome"). We found that COVID-19 patients exhibit dramatic increases in autoantibody reactivities compared to uninfected controls, with a high prevalence of autoantibodies against immunomodulatory proteins including cytokines, chemokines, complement components, and cell surface proteins. We established that these autoantibodies perturb immune function and impair virological control by inhibiting immunoreceptor signaling and by altering peripheral immune cell composition, and found that murine surrogates of these autoantibodies exacerbate disease severity in a mouse model of SARS-CoV-2 infection. Analysis of autoantibodies against tissue-associated antigens revealed associations with specific clinical characteristics and disease severity. In summary, these findings implicate a pathological role for exoproteome-directed autoantibodies in COVID-19 with diverse impacts on immune functionality and associations with clinical outcomes.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-383661

RESUMO

1The biomedical community is producing increasingly high dimensional datasets, integrated from hundreds of patient samples, which current computational techniques struggle to explore. To uncover biological meaning from these complex datasets, we present an approach called Multiscale PHATE, which learns abstracted biological features from data that can be directly predictive of disease. Built on a continuous coarse graining process called diffusion condensation, Multiscale PHATE creates a tree of data granularities that can be cut at coarse levels for high level summarizations of data, as well as at fine levels for detailed representations on subsets. We apply Multiscale PHATE to study the immune response to COVID-19 in 54 million cells from 168 hospitalized patients. Through our analysis of patient samples, we identify CD16hi CD66blo neutrophil and IFN{gamma}+GranzymeB+ Th17 cell responses enriched in patients who die. Further, we show that population groupings Multiscale PHATE discovers can be directly fed into a classifier to predict disease outcome. We also use Multiscale PHATE-derived features to construct two different manifolds of patients, one from abstracted flow cytometry features and another directly on patient clinical features, both associating immune subsets and clinical markers with outcome.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20189159

RESUMO

Coronavirus disease-2019 (COVID-19) has poorer clinical outcomes in males compared to females, and immune responses underlie these sex-related differences in disease trajectory. As immune responses are in part regulated by metabolites, we examined whether the serum metabolome has sex-specificity for immune responses in COVID-19. In males with COVID-19, kynurenic acid (KA) and a high KA to kynurenine (K) ratio was positively correlated with age, inflammatory cytokines, and chemokines and was negatively correlated with T cell responses, revealing that KA production is linked to immune responses in males. Males that clinically deteriorated had a higher KA:K ratio than those that stabilized. In females with COVID-19, this ratio positively correlated with T cell responses and did not correlate with age or clinical severity. KA is known to inhibit glutamate release, and we observed that serum glutamate is lower in patients that deteriorate from COVID-19 compared to those that stabilize, and correlates with immune responses. Analysis of Genotype-Tissue Expression (GTEx) data revealed that expression of kynurenine aminotransferase, which regulates KA production, correlates most strongly with cytokine levels and aryl hydrocarbon receptor activation in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes, in COVID-19 infection.

15.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20123414

RESUMO

A growing body of evidence indicates sex differences in the clinical outcomes of coronavirus disease 2019 (COVID-19)1-4. However, whether immune responses against SARS-CoV-2 differ between sexes, and whether such differences explain male susceptibility to COVID-19, is currently unknown. In this study, we examined sex differences in viral loads, SARS-CoV-2-specific antibody titers, plasma cytokines, as well as blood cell phenotyping in COVID-19 patients. By focusing our analysis on patients with mild to moderate disease who had not received immunomodulatory medications, our results revealed that male patients had higher plasma levels of innate immune cytokines and chemokines including IL-8, IL-18, and CCL5, along with more robust induction of non-classical monocytes. In contrast, female patients mounted significantly more robust T cell activation than male patients during SARS-CoV-2 infection, which was sustained in old age. Importantly, we found that a poor T cell response negatively correlated with patients age and was predictive of worse disease outcome in male patients, but not in female patients. Conversely, higher innate immune cytokines in female patients associated with worse disease progression, but not in male patients. These findings reveal a possible explanation underlying observed sex biases in COVID-19, and provide important basis for the development of sex-based approach to the treatment and care of men and women with COVID-19.

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20138289

RESUMO

Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19)1-4. Yet, longitudinal immunological correlates of disease outcome remain unclear. Here, we serially analysed immune responses in 113 COVID-19 patients with moderate (non-ICU) and severe (ICU) disease. Immune profiling revealed an overall increase in innate cell lineages with a concomitant reduction in T cell number. We identify an association between early, elevated cytokines and worse disease outcomes. Following an early increase in cytokines, COVID-19 patients with moderate disease displayed a progressive reduction in type-1 (antiviral) and type-3 (antifungal) responses. In contrast, patients with severe disease maintained these elevated responses throughout the course of disease. Moreover, severe disease was accompanied by an increase in multiple type 2 (anti-helminths) effectors including, IL-5, IL-13, IgE and eosinophils. Unsupervised clustering analysis of plasma and peripheral blood leukocyte data identified 4 immune signatures, representing (A) growth factors, (B) type-2/3 cytokines, (C) mixed type-1/2/3 cytokines, and (D) chemokines that correlated with three distinct disease trajectories of patients. The immune profile of patients who recovered with moderate disease was enriched in tissue reparative growth factor signature (A), while the profile for those with worsened disease trajectory had elevated levels of all four signatures. Thus, we identified development of a maladapted immune response profile associated with severe COVID-19 outcome and early immune signatures that correlate with divergent disease trajectories.

17.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20067835

RESUMO

Rapid and accurate SARS-CoV-2 diagnostic testing is essential for controlling the ongoing COVID-19 pandemic. The current gold standard for COVID-19 diagnosis is real-time RT-PCR detection of SARS-CoV-2 from nasopharyngeal swabs. Low sensitivity, exposure risks to healthcare workers, and global shortages of swabs and personal protective equipment, however, necessitate the validation of new diagnostic approaches. Saliva is a promising candidate for SARS-CoV-2 diagnostics because (1) collection is minimally invasive and can reliably be self-administered and (2) saliva has exhibited comparable sensitivity to nasopharyngeal swabs in detection of other respiratory pathogens, including endemic human coronaviruses, in previous studies. To validate the use of saliva for SARS-CoV-2 detection, we tested nasopharyngeal and saliva samples from confirmed COVID-19 patients and self-collected samples from healthcare workers on COVID-19 wards. When we compared SARS-CoV-2 detection from patient-matched nasopharyngeal and saliva samples, we found that saliva yielded greater detection sensitivity and consistency throughout the course of infection. Furthermore, we report less variability in self-sample collection of saliva. Taken together, our findings demonstrate that saliva is a viable and more sensitive alternative to nasopharyngeal swabs and could enable at-home self-administered sample collection for accurate large-scale SARS-CoV-2 testing.

18.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20048108

RESUMO

The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assays are being used by clinical, research, and public health laboratories. However, it is currently unclear if results from different tests are comparable. Our goal was to evaluate the primer-probe sets used in four common diagnostic assays available on the World Health Organization (WHO) website. To facilitate this effort, we generated RNA transcripts to be used as assay standards and distributed them to other laboratories for internal validation. We then used (1) RNA transcript standards, (2) full-length SARS-CoV-2 RNA, (3) pre-COVID-19 nasopharyngeal swabs, and (4) clinical samples from COVID-19 patients to determine analytical efficiency and sensitivity of the qRT-PCR primer-probe sets. We show that all primer-probe sets can be used to detect SARS-CoV-2 at 500 virus copies per reaction, except for the RdRp-SARSr (Charite) confirmatory primer-probe set which has low sensitivity. Our findings characterize the limitations of currently used primer-probe sets and can assist other laboratories in selecting appropriate assays for the detection of SARS-CoV-2.

19.
Transbound Emerg Dis ; 67 Suppl 2: 49-59, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31232527

RESUMO

Neorickettsia helminthoeca (NH), the agent of salmon poisoning disease or canine neorickettiosis (CN), is a bacterial endosymbiont of the nematode Nanophyetus salmincola, and infections are spreading among specific fish-eating mammalians. This article describes the pathologic and immunohistochemical findings associated with spontaneous NH-induced infections in dogs from Southern Brazil. The principal pathologic findings were hypertrophy of Peyer patches and lymphadenopathy with lymphocytic proliferation, chronic interstitial pneumonia, and chronic enteritis associated with positive intralesional immunoreactivity to antigens of NH within macrophages and histiocytes. Positive immunoreactivity against canine parvovirus-2 (CPV-2) or/and canine distemper virus was not detected in the evaluated intestinal segments or in the samples from the cerebellum and lungs, respectively, from the dogs evaluated. These findings demonstrated that NH was involved in the enteric, pulmonary, and lymphoid lesions herein described, and provide additional information to confirm the occurrence of this bacterial endosymbiont within this geographical location. It is proposed that chronic pneumonia should be considered as a pathologic manifestation of NH-induced infections. Additionally, our results show that the occurrences of CN seem to be underdiagnosed in Southern Brazil due to the confusion with the incidence of CPV-2.


Assuntos
Infecções por Anaplasmataceae/veterinária , Doenças do Cão/microbiologia , Gastroenterite/veterinária , Pneumopatias/veterinária , Doenças Linfáticas/veterinária , Neorickettsia/isolamento & purificação , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Antígenos de Bactérias/imunologia , Brasil/epidemiologia , Reações Cruzadas , Vírus da Cinomose Canina/imunologia , Doenças do Cão/epidemiologia , Doenças do Cão/imunologia , Cães , Feminino , Gastroenterite/epidemiologia , Gastroenterite/imunologia , Gastroenterite/microbiologia , Imuno-Histoquímica , Pneumopatias/epidemiologia , Pneumopatias/imunologia , Pneumopatias/microbiologia , Doenças Linfáticas/epidemiologia , Doenças Linfáticas/imunologia , Doenças Linfáticas/microbiologia , Masculino , Neorickettsia/imunologia , Parvovirus Canino/imunologia , Simbiose
20.
Ciênc. rural ; 41(2): 200-204, fev. 2011. tab
Artigo em Português | LILACS | ID: lil-578650

RESUMO

Dentro de um programa de controle de qualidade, a avaliação do vigor de sementes é fundamental e necessária para o sucesso da produção. Este trabalho teve como objetivo avaliar a eficiência de diferentes testes de vigor na avaliação da qualidade fisiológica de sementes de triticale (X. triticosecale Wittmack), buscando a diferenciação de lotes. Cinco lotes da cultivar 'IPR 111' foram submetidos ao teste de germinação, primeira contagem, teste de frio, condutividade elétrica (50 sementes 50mL-1 de água; 25°C 24h-1), lixiviação de potássio (50 sementes 75mL-1 de água; 25°C 3h-1), envelhecimento acelerado (43°C 48h-1) e teor de água. O teste de condutividade elétrica e lixiviação de potássio são eficientes na diferenciação do vigor de lotes de sementes de triticale.


In a program of seed quality assurance, the evaluation of seed vigor is fundamental and necessary to the global production process outcome. The objective of this experiment was to verify the efficiency of different vigor tests for evaluation of triticale seeds (X. triticosecale Wittmack) seeking the lots differentiation. Five lots of triticale seeds (cv. IPR 111) were submitted to the following evaluations: germination, first counting of germination test, cold test, electrical conductivity test (50 seeds into 50ml of water, at 25°C for 24 hours), accelerated aging test (43°C 48h-1) in distilled water (100 percent RH), and also seed water content. The test of electrical conductivity and potassium leaching was efficient to distinguish vigor of triticale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...