Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 16(3)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33827052

RESUMO

Porous magnesium implants are of particular interest for application as resorbable bone substitutes, due to their mechanical strength and a Young's modulus similar to bone. The objective of the present study was to compare the biocompatibility, bone and tissue ingrowth, and the degradation behaviour of scaffolds made from the magnesium alloys LAE442 (n= 40) and Mg-La2 (n= 40)in vivo. For this purpose, cylindrical magnesium scaffolds (diameter 4 mm, length 5 mm) with defined, interconnecting pores were produced by investment casting and coated with MgF2. The scaffolds were inserted into the cancellous part of the greater trochanter ossis femoris of rabbits. After implantation periods of 6, 12, 24 and 36 weeks, the bone-scaffold compounds were evaluated usingex vivo µCT80 images, histological examinations and energy dispersive x-ray spectroscopy analysis. The La2 scaffolds showed inhomogeneous and rapid degradation, with inferior osseointegration as compared to LAE442. For the early observation times, no bone and tissue could be observed in the pores of La2. Furthermore, the excessive amount of foreign body cells and fibrous capsule formation indicates insufficient biocompatibility of the La2 scaffolds. In contrast, the LAE442 scaffolds showed slow degradation and better osseointegration. Good vascularization, a moderate cellular response, bone and osteoid-like bone matrix at all implantation periods were observed in the pores of LAE442. In summary, porous LAE442 showed promise as a degradable scaffold for bone defect repair, based on its degradation behaviour and biocompatibility. However, further studies are needed to show it would have the necessary mechanical properties required over time for weight-bearing bone defects.


Assuntos
Ligas/química , Materiais Biocompatíveis , Lantânio/química , Magnésio/química , Alicerces Teciduais/química , Animais , Reabsorção Óssea , Substitutos Ósseos/química , Osso e Ossos/metabolismo , Feminino , Teste de Materiais , Microscopia Eletrônica de Varredura , Osseointegração , Porosidade , Coelhos , Estresse Mecânico , Microtomografia por Raio-X
2.
Acta Biomater ; 94: 610-626, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125727

RESUMO

Selective laser melting (SLM) has enabled the production of porous titanium structures with biological and mechanical properties that mimic bone for orthopedic applications. These porous structures have a reduced effective stiffness which leads to improved mechanotransduction between the implant and bone. Triply periodic minimal surfaces (TMPS), specifically the sheet-based gyroid structures, have improved compressive fatigue resistance due lack of stress concentrations. Sheet-based gyroid microarchitectures also have high surface area, permeability, and zero mean curvature. This study examines the effects of the gyroid microarchitectural design in parallel with SLM parameters on structure and function of as-built titanium alloy (Ti6Al4V ELI) scaffolds. Scaffold design was varied by varying unit cell size and wall thickness to produce scaffolds with porosity within the range of trabecular bone (50-90%). Manufacturer's default and refined laser parameters were used to examine the effect of input energy density on mechanical properties. Scaffolds exhibited a stretching-dominated deformation behavior under both compressive and tensile loading, and porosity dependent stiffness and strength. Internal void defects were observed within the walls of the gyroids structure, serving as sites for crack initiation leading to failure. Refinement of laser parameters resulted in increased compressive and tensile fatigue behavior, particularly for thicker walled gyroid microarchitectures, while thinner walls showed no significant change. The observed properties of as-built gyroid sheet microarchitectures indicates that these structures have potential for use in bone engineering applications. Furthermore, these results highlight the importance of parallel design and processing optimization for complex sheet-based porous structures produced via SLM. STATEMENT OF SIGNIFICANCE: Selective laser melting (SLM) is an additive manufacturing technology which produces complex porous scaffolds for orthopedic applications. Titanium alloy scaffolds with novel sheet-based gyroid microarchitectures were produced via SLM and evaluated for mechanical performance including fatigue behavior. Gyroid structures are function based topologies have been hypothesized to be promising for tissue engineering scaffolds due to the high surface area to volume ratio, zero mean curvature, and high permeability. This paper presents the effects of scaffold design and processing parameters in parallel, a novel study in the field on bone tissue scaffolds produced via additive manufacturing. Additionally, the comparison of compressive and tensile behavior of scaffolds presented is important in characterizing behavior and failure mechanisms of porous metals which undergo complex loading in orthopedic applications.


Assuntos
Substitutos Ósseos/química , Osso e Ossos/química , Alicerces Teciduais/química , Titânio/química , Ligas , Substitutos Ósseos/metabolismo , Osso Esponjoso/metabolismo , Força Compressiva , Módulo de Elasticidade , Lasers , Porosidade , Pressão , Estresse Mecânico , Relação Estrutura-Atividade , Propriedades de Superfície , Resistência à Tração , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA