Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AJNR Am J Neuroradiol ; 34(8): 1506-12, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23557960

RESUMO

BACKGROUND AND PURPOSE: There is a desire within many institutions to reduce the radiation dose in CTP examinations. The purpose of this study was to simulate dose reduction through the addition of noise in brain CT perfusion examinations and to determine the subsequent effects on quality and quantitative interpretation. MATERIALS AND METHODS: A total of 22 consecutive reference CTP scans were identified from an institutional review board-approved prospective clinical trial, all performed at 80 keV and 190 mAs. Lower-dose scans at 188, 177, 167, 127, and 44 mAs were generated through the addition of spatially correlated noise to the reference scans. A standard software package was used to generate CBF, CBV, and MTT maps. Six blinded radiologists determined quality scores of simulated scans on a Likert scale. Quantitative differences were calculated. RESULTS: For qualitative analysis, the correlation coefficients for CBF (-0.34; P < .0001), CBV (-0.35; P < .0001), and MTT (-0.44; P < .0001) were statistically significant. Interobserver agreements in quality for the simulated 188-, 177-, 167-, 127-, and 44-mAs scans for CBF were 0.95, 0.98, 0.98, 0.95, and 0.52, respectively. Interobserver agreements in quality for the simulated CBV were 1, 1, 1, 1, and 0.83, respectively. For MTT, the interobserver agreements were 0.83, 0.86, 0.88, 0.74, and 0.05, respectively. For quantitative analysis, only the lowest simulated dose of 44 mAs showed statistically significant differences from the reference scan values for CBF (-1.8; P = .04), CBV (0.07; P < .0001), and MTT (0.46; P < .0001). CONCLUSIONS: From a reference CTP study performed at 80 keV and 190 mAs, this simulation study demonstrates the potential of a 33% reduction in tube current and dose while maintaining image quality and quantitative interpretations. This work can be used to inform future studies by using true, nonsimulated scans.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Angiografia Cerebral/métodos , Interpretação de Imagem Assistida por Computador/métodos , Doses de Radiação , Proteção Radiológica/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Razão Sinal-Ruído
2.
Eur Spine J ; 8(5): 388-95, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10552322

RESUMO

The increased intra-abdominal pressure (IAP) commonly observed when the spine is loaded during physical activities is hypothesized to increase lumbar spine stability. The mechanical stability of the lumbar spine is an important consideration in low back injury prevention and rehabilitation strategies. This study examined the effects of raised IAP and an abdominal belt on lumbar spine stability. Two hypotheses were tested: (1) An increase in IAP leads to increased lumbar spine stability, (2) Wearing an abdominal belt increases spine stability. Ten volunteers were placed in a semi-seated position in a jig that restricted hip motion leaving the upper torso free to move in any direction. The determination of lumbar spine stability was accomplished by measuring the instantaneous trunk stiffness in response to a sudden load release. The quick release method was applied in isometric trunk flexion, extension, and lateral bending. Activity of 12 major trunk muscles was monitored with electromyography and the IAP was measured with an intra-gastric pressure transducer. A two-factor repeated measures design was used (P < 0.05), in which the spine stability was evaluated under combinations of the following two factors: belt or no belt and three levels of IAP (0, 40, and 80% of maximum). The belt and raised IAP increased trunk stiffness in all directions, but the results in extension lacked statistical significance. In flexion, trunk stiffness increased by 21% and 42% due to 40% and 80% IAP levels respectively; in lateral bending, trunk stiffness increased by 16% and 30%. The belt added between 9% and 57% to the trunk stiffness depending on the IAP level and the direction of exertion. In all three directions, the EMG activity of all 12 trunk muscles increased significantly due to the elevated IAP. The belt had no effect on the activity of any of the muscles with the exception of the thoracic erector spinae in extension and the lumbar erector spinae in flexion, whose activities decreased. The results indicate that both wearing an abdominal belt and raised IAP can each independently, or in combination, increase lumbar spine stability. However, the benefits of the belt must be interpreted with caution in the context of the decreased activation of a few trunk extensor muscles.


Assuntos
Abdome , Instabilidade Articular/terapia , Aparelhos Ortopédicos , Doenças da Coluna Vertebral/terapia , Coluna Vertebral/fisiopatologia , Abdome/fisiopatologia , Músculos Abdominais/fisiopatologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Humanos , Instabilidade Articular/fisiopatologia , Região Lombossacral , Modelos Biológicos , Pressão , Doenças da Coluna Vertebral/fisiopatologia , Resultado do Tratamento , Manobra de Valsalva
3.
J Biomech ; 32(1): 13-7, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10050947

RESUMO

Currently, intra-abdominal pressure (IAP) is thought to provide stability to the lumbar spine but the exact principles have yet to be specified. A simplified physical model was constructed and theoretical calculations performed to illustrate a possible intra-abdominal pressure mechanism for stabilizing the spine. The model consisted of an inverted pendulum with linear springs representing abdominal and erector spinae muscle groups. The IAP force was simulated with a pneumatic piston activated with compressed air. The critical load of the model was calculated theoretically based on the minimum potential energy principle and obtained experimentally by increasing weight on the model until the point of buckling. Two distinct mechanisms were simulated separately and in combination. One was antagonistic flexor extensor muscle coactivation and the second was abdominal muscle activation along with generation of IAP. Both mechanisms were effective in stabilizing the model of a lumbar spine. The critical load and therefore the stability of the spine model increased with either increased antagonistic muscle coactivation forces or increased IAP along with increased abdominal spring force. Both mechanisms were also effective in providing mechanical stability to the spine model when activated simultaneously. Theoretical calculation of the critical load agreed very well with experimental results (95.5% average error). The IAP mechanism for stabilizing the lumbar spine appears preferable in tasks that demand trunk extensor moment such as lifting or jumping. This mechanism can increase spine stability without the additional coactivation of erector spinae muscles.


Assuntos
Abdome/fisiologia , Coluna Vertebral/fisiologia , Fenômenos Biomecânicos , Humanos , Região Lombossacral , Músculo Esquelético/fisiologia , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...