Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11103, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750093

RESUMO

Safe and effective pain management is a critical healthcare and societal need. The potential for acute liver injury from paracetamol (ApAP) overdose; nephrotoxicity and gastrointestinal damage from chronic non-steroidal anti-inflammatory drug (NSAID) use; and opioids' addiction are unresolved challenges. We developed SRP-001, a non-opioid and non-hepatotoxic small molecule that, unlike ApAP, does not produce the hepatotoxic metabolite N-acetyl-p-benzoquinone-imine (NAPQI) and preserves hepatic tight junction integrity at high doses. CD-1 mice exposed to SRP-001 showed no mortality, unlike a 70% mortality observed with increasing equimolar doses of ApAP within 72 h. SRP-001 and ApAP have comparable antinociceptive effects, including the complete Freund's adjuvant-induced inflammatory von Frey model. Both induce analgesia via N-arachidonoylphenolamine (AM404) formation in the midbrain periaqueductal grey (PAG) nociception region, with SRP-001 generating higher amounts of AM404 than ApAP. Single-cell transcriptomics of PAG uncovered that SRP-001 and ApAP also share modulation of pain-related gene expression and cell signaling pathways/networks, including endocannabinoid signaling, genes pertaining to mechanical nociception, and fatty acid amide hydrolase (FAAH). Both regulate the expression of key genes encoding FAAH, 2-arachidonoylglycerol (2-AG), cannabinoid receptor 1 (CNR1), CNR2, transient receptor potential vanilloid type 4 (TRPV4), and voltage-gated Ca2+ channel. Phase 1 trial (NCT05484414) (02/08/2022) demonstrates SRP-001's safety, tolerability, and favorable pharmacokinetics, including a half-life from 4.9 to 9.8 h. Given its non-hepatotoxicity and clinically validated analgesic mechanisms, SRP-001 offers a promising alternative to ApAP, NSAIDs, and opioids for safer pain treatment.


Assuntos
Acetaminofen , Analgésicos , Ácidos Araquidônicos , Substância Cinzenta Periaquedutal , Transcriptoma , Animais , Masculino , Camundongos , Acetaminofen/efeitos adversos , Amidoidrolases/metabolismo , Amidoidrolases/genética , Analgésicos/farmacologia , Ácidos Araquidônicos/farmacologia , Benzoquinonas/farmacologia , Glicerídeos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/efeitos dos fármacos
2.
Exp Eye Res ; 235: 109639, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37659709

RESUMO

Docosahexaenoic acid (DHA; 22:6) plays a key role in vision and is the precursor for very-long-chain polyunsaturated fatty acids (VLC-PUFAs). The release of 32- and 34-carbon VLC-PUFAs and DHA from sn-1 and sn-2 of phosphatidylcholine (PC) leads to the synthesis of cell-survival mediators, the elovanoids (ELVs) and neuroprotectin D1 (NPD1), respectively. Macula and periphery from age-related macular degeneration (AMD) donor retinas were assessed for the availability of DHA-related lipids by LC-MS/MS-based lipidomic analysis and MALDI-molecular imaging. We found reduced retina DHA and VLC-PUFA pathways to synthesize omega-3 ELVs from precursors that likely resulted in altered disks and photoreceptor loss. Additionally, we compared omega-3 (n-3) fatty acid with DHA (22:6) and omega-6 (n-6) fatty acid with arachidonic acid (AA; 20:4) pathways. n-3 PC(22:6/22:6, 44:12) and n-6 PC(20:4/20:4, 40:8) showed differences among male/female, macula/periphery, and normal/AMD retinas. Periphery of AMD retina males increased 44:12 abundance, while normal females increased 40:8 (all macula had an upward 40:8 tendency). We also showed that female AMD switched from n-3 to n-6 fatty acids; most changes in AMD occurred in the periphery of female AMD retinas. DHA and VLC-PUFA release from PCs leads to conversion in pro-survival NPD1 and ELVs. The loss of the neuroprotective precursors of ELVs in the retina periphery from AMD facilitates uncompensated stress and cell loss. In AMD, the female retina loses peripheral rods VLC-PUFAs to about 33% less than in males limiting ELV formation and its protective bioactivity.


Assuntos
Ácidos Graxos Ômega-3 , Degeneração Macular , Feminino , Masculino , Humanos , Regulação para Baixo , Cromatografia Líquida , Espectrometria de Massas em Tandem
3.
Pharmacol Ther ; 249: 108482, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385300

RESUMO

Stargardt maculopathy, caused predominantly by mutations in the ABCA4 gene, is characterized by an accumulation of non-degradable visual pigment derivative, lipofuscin, in the retinal pigment epithelium (RPE) - resulting in RPE atrophy. RPE is a monolayer tissue located adjacent to retinal photoreceptors and regulates their health and functioning; RPE atrophy triggers photoreceptor cell death and vision loss in Stargardt patients. Previously, ABCA4 mutations in photoreceptors were thought to be the major contributor to lipid homeostasis defects in the eye. Recently, we demonstrated that ABCA4 loss of function in the RPE leads to cell-autonomous lipid homeostasis defects. Our work underscores that an incomplete understanding of lipid metabolism and lipid-mediated signaling in the retina and RPE are potential causes for lacking treatments for this disease. Here we report altered lipidomic in mouse and human Stargardt models. This work provides the basis for therapeutics that aim to restore lipid homeostasis in the retina and the RPE.


Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Camundongos , Animais , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Retina/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Lipofuscina/genética , Lipofuscina/metabolismo , Atrofia/metabolismo , Atrofia/patologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo
4.
Res Sq ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205420

RESUMO

The safe and effective management of pain is a critical healthcare and societal need. The potential for misuse and addiction associated with opioids, nephrotoxicity, and gastrointestinal damage from chronic non-steroidal anti-inflammatory drug (NSAID) use, as well as acute liver injury from paracetamol (ApAP) overdose, are unresolved challenges. To address them, we developed a non-opioid and non-hepatotoxic small molecule, SRP-001. Compared to ApAP, SRP-001 is not hepatotoxic as it does not produce N-acetyl-p-benzoquinone-imine (NAPQI) and maintains hepatic tight junction integrity at high doses. SRP-001 has comparable analgesia in pain models, including the complete Freund's adjuvant (CFA) inflammatory von Frey. Both induce analgesia via N-arachidonoylphenolamine (AM404) formation in the midbrain periaqueductal grey (PAG) nociception area, with SRP-001 generating higher amounts of AM404 than ApAP. Single-cell transcriptomics of PAG uncovered that SRP-001 and ApAP also share modulation of pain-related gene expression and cell signaling pathways, including the endocannabinoid, mechanical nociception, and fatty acid amide hydrolase (FAAH) pathways. Both regulate the expression of key genes encoding FAAH, 2-AG, CNR1, CNR2, TRPV4, and voltage-gated Ca2+ channel. Interim Phase 1 trial results demonstrate SRP-001's safety, tolerability, and favorable pharmacokinetics (NCT05484414). Given its non-hepatotoxicity and clinically validated analgesic mechanisms, SRP-001 offers a promising alternative to ApAP, NSAIDs, and opioids for safer pain treatment.

5.
Cell Mol Neurobiol ; 43(2): 797-811, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35362880

RESUMO

Alzheimer's disease (AD) develops into dementia over a period of several years, during which subjective cognitive impairment (SCI) and mild cognitive impairment (MCI) can be used as intermediary diagnoses of increasing severity. Chronic neuroinflammation resulting from insufficient resolution is involved in the pathogenesis of AD and is associated with cognitive impairment. Specialized pro-resolving lipid mediators (LMs) that promote the resolution of inflammation may be valuable markers in AD diagnosis and as therapeutic targets. Liquid chromatography-tandem mass spectrometry was used to analyze pro-resolving and pro-inflammatory LMs in cerebrospinal fluid (CSF) from patients with cognitive impairment ranging from subjective impairment to a diagnosis of AD and correlated to cognition, CSF tau, and ß-amyloid. Resolvin (Rv) D4, RvD1, neuroprotectin D1 (NPD1), maresin 1 (MaR1), and RvE4 were lower in AD and/or MCI compared to SCI. The pro-inflammatory LTB4 and 15-HETE were higher in AD and MCI, respectively, while PGD2, PGE2, and PGF2a were decreased in AD, compared to SCI. RvD4 was also negatively correlated to AD tangle biomarkers, and positive correlations to cognitive test scores were observed for both pro-resolving LMs and their precursor fatty acids. In this exploratory study of the lipidome in CSF of AD, MCI, and SCI, the results indicate a shift in the LM profile from pro-resolving to pro-inflammatory in progression to AD, suggesting that it may be of use as a biomarker when followed by confirmation by replication studies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Cognição , Inflamação , Biomarcadores , Proteínas tau , Fragmentos de Peptídeos , Progressão da Doença
6.
Front Neurosci ; 16: 926629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873810

RESUMO

Retinal pigment epithelial (RPE) cells sustain photoreceptor integrity, and when this function is disrupted, retinal degenerations ensue. Herein, we characterize a new cell line from human RPE that we termed ABC. These cells remarkably recapitulate human eye native cells. Distinctive from other epithelia, RPE cells originate from the neural crest and follow a neural development but are terminally differentiated into "epithelial" type, thus sharing characteristics with their neuronal lineages counterparts. Additionally, they form microvilli, tight junctions, and honeycomb packing and express distinctive markers. In these cells, outer segment phagocytosis, phagolysosome fate, phospholipid metabolism, and lipid mediator release can be studied. ABC cells display higher resistance to oxidative stress and are protected from senescence through mTOR inhibition, making them more stable in culture. The cells are responsive to Neuroprotectin D1 (NPD1), which downregulates inflammasomes and upregulates antioxidant and anti-inflammatory genes. ABC gene expression profile displays close proximity to native RPE lineage, making them a reliable cell system to unravel signaling in uncompensated oxidative stress (UOS) and retinal degenerative disease to define neuroprotection sites.

7.
Commun Biol ; 5(1): 245, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314851

RESUMO

Sustained microglial activation and increased pro-inflammatory signalling cause chronic inflammation and neuronal damage in Alzheimer's disease (AD). Resolution of inflammation follows neutralization of pathogens and is a response to limit damage and promote healing, mediated by pro-resolving lipid mediators (LMs). Since resolution is impaired in AD brains, we decided to test if intranasal administration of pro-resolving LMs in the AppNL-G-F/NL-G-F mouse model for AD could resolve inflammation and ameliorate pathology in the brain. A mixture of the pro-resolving LMs resolvin (Rv) E1, RvD1, RvD2, maresin 1 (MaR1) and neuroprotectin D1 (NPD1) was administered to stimulate their respective receptors. We examined amyloid load, cognition, neuronal network oscillations, glial activation and inflammatory factors. The treatment ameliorated memory deficits accompanied by a restoration of gamma oscillation deficits, together with a dramatic decrease in microglial activation. These findings open potential avenues for therapeutic exploration of pro-resolving LMs in AD, using a non-invasive route.


Assuntos
Doença de Alzheimer , Administração Intranasal , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Animais , Inflamação , Camundongos
8.
Biochimie ; 195: 16-18, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34990771

RESUMO

Little is known of the lipid anti-inflammatory mediators, docosanoids, in intracerebral hemorrhage (ICH). We aim to characterize the abundance of the docosanoid, Neuroprotectin D1 (NPD1), in ICH patients. Blood samples (whole blood in PAXgene-blood-RNA tubes and plasma) were collected from consecutive patients with acute spontaneous ICH within 48 h of admission. A liquid-liquid lipid extraction was used for liquid chromatography-mass spectrometry (LC-MS/MS) and analyzed using MassLynx Mass Spectrometry Software with results normalized to internal standards. RNA was extracted from PAXgene-blood-RNA tubes for 15-LOX-1 gene expression, a critical enzyme in NPD1 synthesis. Demographic and clinical data were collected. Outcome measures included 90-day modified-rankin-score. Sixteen patients were included in the study with a mean age of 62.5years (SD13.5). Three abundant isomers were detected and analyzed - NPD1, PDX, and an uncharacterized isomer designated as NPD1-C. NPD1 levels were higher in patients with 90-day MRS 0-3 (49.63pg/mL SD43.78 vs. 1.88pg/mL SD1.7 p = 0.0012). ROC-AUC analysis showed an NPD1 cutoff of 2.9pg/mL differentiated 90-day MRS 0-3 (sensitivity 100%, specificity 88.89%, AUC 0.98 p = 0.0002). A Spearman correlation demonstrated an inverse relationship with NPD1 and 90-day MRS (rho -7.392 p = 0.0011). 15-LOX-1 gene was almost undetectable in patients with MRS 4-6. Though not significant, NPD1 levels were higher in patients <65 years, ICH volume <30 ml, and non-whites. NPD1 was abundant and significantly higher in ICH patients with MRS 0-3.15-LOX-1 was significantly under-expressed in patients with MRS 4-6. Early synthesis and abundance of NPD1 is likely an important protective mediator in ICH pathophysiology.


Assuntos
Ácidos Docosa-Hexaenoicos , Espectrometria de Massas em Tandem , Hemorragia Cerebral , Cromatografia Líquida , Ácidos Docosa-Hexaenoicos/metabolismo , Humanos , Pessoa de Meia-Idade
10.
Commun Biol ; 4(1): 1360, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887495

RESUMO

Late-onset retinal degeneration (L-ORD) is an autosomal dominant disorder caused by a missense substitution in CTRP5. Distinctive clinical features include sub-retinal pigment epithelium (RPE) deposits, choroidal neovascularization, and RPE atrophy. In induced pluripotent stem cells-derived RPE from L-ORD patients (L-ORD-iRPE), we show that the dominant pathogenic CTRP5 variant leads to reduced CTRP5 secretion. In silico modeling suggests lower binding of mutant CTRP5 to adiponectin receptor 1 (ADIPOR1). Downstream of ADIPOR1 sustained activation of AMPK renders it insensitive to changes in AMP/ATP ratio resulting in defective lipid metabolism, reduced Neuroprotectin D1(NPD1) secretion, lower mitochondrial respiration, and reduced ATP production. These metabolic defects result in accumulation of sub-RPE deposits and leave L-ORD-iRPE susceptible to dedifferentiation. Gene augmentation of L-ORD-iRPE with WT CTRP5 or modulation of AMPK, by metformin, re-sensitize L-ORD-iRPE to changes in cellular energy status alleviating the disease cellular phenotypes. Our data suggests a mechanism for the dominant behavior of CTRP5 mutation and provides potential treatment strategies for L-ORD patients.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Degeneração Retiniana/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
11.
Oncogene ; 40(38): 5741-5751, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34333551

RESUMO

Cancer cells exhibit dysregulation of critical genes including those involved in lipid biosynthesis, with subsequent defects in metabolism. Here, we show that ELOngation of Very Long chain fatty acids protein 4 (ELOVL4), a rate-limiting enzyme in the biosynthesis of very-long polyunsaturated fatty acids (n-3, ≥28 C), is expressed and transcriptionally repressed by the oncogene MYCN in neuroblastoma cells. In keeping, ELOVL4 positively regulates neuronal differentiation and lipids droplets accumulation in neuroblastoma cells. At the molecular level we found that MYCN binds to the promoter of ELOVL4 in close proximity to the histone deacetylases HDAC1, HDAC2, and the transcription factor Sp1 that can cooperate in the repression of ELOVL4 expression. Accordingly, in vitro differentiation results in an increase of fatty acid with 34 carbons with 6 double bonds (FA34:6); and when MYCN is silenced, FA34:6 metabolite is increased compared with the scrambled. In addition, analysis of large neuroblastoma datasets revealed that ELOVL4 expression is highly expressed in localized clinical stages 1 and 2, and low in high-risk stages 3 and 4. More importantly, high expression of ELOVL4 stratifies a subsets of neuroblastoma patients with good prognosis. Indeed, ELOVL4 expression is a marker of better overall clinical survival also in MYCN not amplified patients and in those with neuroblastoma-associated mutations. In summary, our findings indicate that MYCN, by repressing the expression of ELOVL4 and lipid metabolism, contributes to the progression of neuroblastoma.


Assuntos
Regulação para Baixo , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/patologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Mutação , Gradação de Tumores , Estadiamento de Neoplasias , Neuroblastoma/genética , Neuroblastoma/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Análise de Sobrevida
12.
FASEB J ; 35(8): e21775, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245621

RESUMO

Innervation sustains cornea integrity. Pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA) regenerated damaged nerves by stimulating the synthesis of a new stereoisomer of Resolvin D6 (RvD6si). Here, we resolved the structure of this lipid isolated from mouse tears after injured corneas were treated with PEDF + DHA. RvD6si synthesis was inhibited by fluvoxamine, a cytochrome P450 inhibitor, but not by 15- or 5-LOX inhibitors, suggesting that the 4- and 17-hydroxy of DHA have an RR- or SR-configuration. The two compounds were chemically synthesized. Using chiral phase HPLC, four peaks of RvD6si1-4 from tears were resolved. The RR-RvD6 standard eluted as a single peak with RvD61 while pure SR-RvD6 eluted with RvD63 . The addition of these pure mediators prompted a trigeminal ganglion transcriptome response in injured corneas and showed that RR-RvD6 was the more potent, increasing cornea sensitivity and nerve regeneration. RR-RvD6 stimulates Rictor and hepatocyte growth factor (hgf) genes specifically as upstream regulators and a gene network involved in axon growth and suppression of neuropathic pain, indicating a novel function of this lipid mediator to maintain cornea integrity and homeostasis after injury.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Regeneração Nervosa , Nervo Trigêmeo/fisiologia , Animais , Fluvoxamina/farmacologia , Fator de Crescimento de Hepatócito/metabolismo , Masculino , Camundongos , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
13.
Sci Rep ; 11(1): 12324, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112906

RESUMO

The pro-homeostatic lipid mediators elovanoids (ELVs) attenuate cell binding and entrance of the SARS-CoV-2 receptor-binding domain (RBD) as well as of the SARS-CoV-2 virus in human primary alveoli cells in culture. We uncovered that very-long-chain polyunsaturated fatty acid precursors (VLC-PUFA, n-3) activate ELV biosynthesis in lung cells. Both ELVs and their precursors reduce the binding to RBD. ELVs downregulate angiotensin-converting enzyme 2 (ACE2) and enhance the expression of a set of protective proteins hindering cell surface virus binding and upregulating defensive proteins against lung damage. In addition, ELVs and their precursors decreased the signal of spike (S) protein found in SARS-CoV-2 infected cells, suggesting that the lipids curb viral infection. These findings open avenues for potential preventive and disease-modifiable therapeutic approaches for COVID-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , COVID-19/metabolismo , Células Cultivadas , Humanos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
Acta Neuropathol Commun ; 9(1): 116, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187579

RESUMO

Sustained brain chronic inflammation in Alzheimer's disease (AD) includes glial cell activation, an increase in cytokines and chemokines, and lipid mediators (LMs), concomitant with decreased pro-homeostatic mediators. The inflammatory response at the onset of pathology engages activation of pro-resolving, pro-homeostatic LMs followed by a gradual decrease. We used an APP knock-in (App KI) AD mouse that accumulates ß-amyloid (Aß) and presents cognitive deficits (at 2 and 6 months of age, respectively) to investigate LMs, their precursors, biosynthetic enzymes and receptors, glial activation, and inflammatory proteins in the cerebral cortex and hippocampus at 2-, 4-, 8- and 18-month-old in comparison with wild-type (WT) mice. We used LC-mass-spectrometry and MALDI molecular imaging to analyze LMs and phospholipids, and immunochemistry for proteins. Our results revealed an age-specific lipid and cytokine profile, and glial activation in the App KI mice. Despite an early onset of Aß pathology, pro-inflammatory and pro-resolving LMs were prominently increased only in the oldest age group. Furthermore, the LM biosynthetic enzymes increased, and their receptor expression decreased in the aged App KI mice. Arachidonic acid (AA)-containing phospholipid molecular species were elevated, correlating with decreased cPLA2 activity. MALDI molecular imaging depicted differential distribution of phospholipids according to genotype in hippocampal layers. Brain histology disclosed increased microglia proliferation starting from young age in the App KI mice, while astrocyte numbers were enhanced in older ages. Our results demonstrate that the brain lipidome is modified preferentially during aging as compared to amyloid pathology in the model studied here. However, alterations in phospholipids signal early pathological changes in membrane composition.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Encéfalo/patologia , Fosfolipídeos/metabolismo , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
15.
Front Cell Dev Biol ; 9: 632930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604342

RESUMO

Patients lacking multifunctional protein 2 (MFP2), the central enzyme of the peroxisomal ß-oxidation pathway, develop retinopathy. This pathway is involved in the metabolism of very long chain (VLCFAs) and polyunsaturated (PUFAs) fatty acids, which are enriched in the photoreceptor outer segments (POS). The molecular mechanisms underlying the retinopathy remain, however, elusive. Here, we report that mice with MFP2 inactivation display decreased retinal function already at the age of 3 weeks, which is accompanied by a profound shortening of the photoreceptor outer and inner segments, but with preserved photoreceptor ultrastructure. Furthermore, MFP2 deficient retinas exhibit severe changes in gene expression with downregulation of genes involved in the phototransduction pathway and upregulation of inflammation related genes. Lipid profiling of the mutant retinas revealed a profound reduction of DHA-containing phospholipids. This was likely due to a hampered systemic supply and retinal traffic of this PUFA, although we cannot exclude that the local defect of peroxisomal ß-oxidation contributes to this DHA decrease. Moreover, very long chain PUFAs were also reduced, with the exception of those containing ≥ 34 carbons that accumulated. The latter suggests that there is an uncontrollable elongation of retinal PUFAs. In conclusion, our data reveal that intact peroxisomal ß-oxidation is indispensable for retinal integrity, most likely by maintaining PUFA homeostasis.

16.
J Lipid Res ; 61(12): 1733-1746, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33127836

RESUMO

Spatial changes of FAs in the retina in response to different dietary n-3 formulations have never been explored, although a diet rich in EPA and DHA is recommended to protect the retina against the effects of aging. In this study, Wistar rats were fed for 8 weeks with balanced diet including either EPA-containing phospholipids (PLs), EPA-containing TGs, DHA-containing PLs, or DHA-containing TGs. Qualitative changes in FA composition of plasma, erythrocytes, and retina were evaluated by gas chromatography-flame ionization detector. Following the different dietary intakes, changes to the quantity and spatial organization of PC and PE species in retina were determined by LC coupled to MS/MS and MALDI coupled to MS imaging. The omega-3 content in the lipids of plasma and erythrocytes suggests that PLs as well as TGs are good omega-3 carriers for retina. However, a significant increase in DHA content in retina was observed, especially molecular species as di-DHA-containing PC and PE, as well as an increase in very long chain PUFAs (more than 28 carbons) following PL-EPA and TG-DHA diets only. All supplemented diets triggered spatial organization changes of DHA in the photoreceptor layer around the optic nerve. Taken together, these findings suggest that dietary omega-3 supplementation can modify the content of FAs in the rat retina.


Assuntos
Ácidos Graxos Ômega-3/farmacocinética , Retina/metabolismo , Animais , Disponibilidade Biológica , Ácidos Graxos Ômega-3/metabolismo , Masculino , Ratos
17.
J Clin Med ; 9(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942740

RESUMO

The main risk factor for primary open-angle glaucoma (POAG) is increased intraocular pressure (IOP). It is of interest that about half of the patients have an IOP within the normal range (normal-tension glaucoma, NTG). Additionally, there is a group of patients with a high IOP but no glaucomatous neurodegeneration (ocular hypertension, OHT). Therefore, risk factors other than IOP are involved in the pathogenesis of glaucoma. Since the retina has a very high oxygen-demand, decreased autoregulation and a fluctuating oxygen supply to the retina have been linked to glaucomatous neurodegeneration. To assess the significance of these mechanisms, we have utilized a human experimental model, in which we stress participants with a fluctuating oxygen supply. Levels of oxidative stress molecules, antioxidants, and lipid mediators were measured in the plasma. Patients with NTG, OHT, and control subjects were found to have similar levels of oxidative stress markers. In contrast, patients with OHT had a higher level of total antioxidant capacity (TAC) and pro-homeostatic lipid mediators. Thus, we suggest that OHT patients manage fluctuating oxygen levels more efficiently and, thus, are less susceptible to glaucomatous neurodegenerations, due to enhanced systemic antioxidant protection.

18.
Eur J Med Chem ; 202: 112600, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32629335

RESUMO

Although acetaminophen (ApAP) is one of the most commonly used medicines worldwide, hepatotoxicity is a risk with overdose or in patients with compromised liver function. ApAP overdose is the most common cause of acute fulminant hepatic failure. Oxidation of ApAP to N-acetyl-p-benzoquinone imine (NAPQI) is the mechanism for hepatotoxicity. 1 is a non-hepatotoxic, metabolically unstable lipophilic ApAP analog that is not antipyretic. The newly synthesized 3 is a non-hepatotoxic ApAP analog that is stable, lipophilic, and retains analgesia and antipyresis. Intraperitoneal or po administration of the new chemical entities (NCEs), 3b and 3r, in concentrations equal to a toxic dose of ApAP did not result in the formation of NAPQI. Unlike livers from NCE-treated mice, the livers from ApAP-treated mice demonstrated large amounts of nitrotyrosine, a marker of mitochondrial free radical formation, and loss of hepatic tight junction integrity. Given the widespread use of ApAP, hepatotoxicity risk with overuse, and the ongoing opioid epidemic, these NCEs represent a novel, non-narcotic therapeutic pipeline.


Assuntos
Acetamidas/farmacologia , Analgésicos/farmacologia , Antipiréticos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Hipertermia/tratamento farmacológico , Fígado/efeitos dos fármacos , Acetamidas/síntese química , Acetamidas/química , Ácido Acético , Analgésicos/síntese química , Analgésicos/química , Animais , Antipiréticos/síntese química , Antipiréticos/química , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/tratamento farmacológico , Fígado/patologia , Masculino , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
19.
Sci Rep ; 10(1): 4582, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165657

RESUMO

The high-density corneal innervation plays a pivotal role in sustaining the integrity of the ocular surface. We have previously demonstrated that pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA) promotes corneal nerve regeneration; here, we report the mechanism involved and the discovery of a stereospecific Resolvin D6-isomer (RvD6si) that drives the process. RvD6si promotes corneal wound healing and functional recovery by restoring corneal innervation after injury. RvD6si applied to the eye surface elicits a specific transcriptome signature in the trigeminal ganglion (TG) that includes Rictor, the rapamycin-insensitive complex-2 of mTOR (mTORC2), and genes involved in axon growth, whereas genes related to neuropathic pain are decreased. As a result, attenuation of ocular neuropathic pain and dry eye will take place. Thus, RvD6si opens up new therapeutic avenues for pathologies that affect corneal innervation.


Assuntos
Lesões da Córnea/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Perfilação da Expressão Gênica/métodos , Regeneração Nervosa/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Nervo Trigêmeo/fisiologia , Cicatrização/efeitos dos fármacos , Animais , Lesões da Córnea/genética , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/isolamento & purificação , Ácidos Docosa-Hexaenoicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lipidômica , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Estrutura Molecular , Neuralgia/genética , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Recuperação de Função Fisiológica/efeitos dos fármacos , Estereoisomerismo , Nervo Trigêmeo/efeitos dos fármacos
20.
FASEB J ; 34(1): 912-929, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914617

RESUMO

Molecular decision-makers of photoreceptor (PRC) membrane organization and gene regulation are critical to understanding sight and retinal degenerations that lead to blindness. Using Mfrprd6 mice, which develop PRC degeneration, we uncovered that membrane-type frizzled-related protein (MFRP) participates in docosahexaenoic acid (DHA, 22:6) enrichment in a manner similar to adiponectin receptor 1 (AdipoR1). Untargeted imaging mass spectrometry demonstrates cell-specific reduction of phospholipids containing 22:6 and very long-chain polyunsaturated fatty acids (VLC-PUFAs) in Adipor1-/- and Mfrprd6 retinas. Gene expression of pro-inflammatory signaling pathways is increased and gene-encoding proteins for PRC function decrease in both mutants. Thus, we propose that both proteins are necessary for retinal lipidome membrane organization, visual function, and to the understanding of the early pathology of retinal degenerative diseases.


Assuntos
Membrana Celular/metabolismo , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Lipidômica , Proteínas de Membrana/metabolismo , Receptores de Adiponectina/metabolismo , Retina/metabolismo , Animais , Eletrorretinografia , Feminino , Inflamação , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...