Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612808

RESUMO

We examined the localization of the 5-hydroxytryptamine (5-HT) receptor and its effects on mouse colonic interstitial cells of Cajal (ICCs) using electrophysiological techniques. Treatment with 5-HT increased the pacemaker activity in colonic ICCs with depolarization of membrane potentials in a dose-dependent manner. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers blocked pacemaker activity and 5-HT-induced effects. Moreover, an adenylate cyclase inhibitor inhibited 5-HT-induced effects, and cell-permeable 8-bromo-cAMP increased the pacemaker activity. Various agonists of the 5-HT receptor subtype were working in colonic ICCs, including the 5-HT4 receptor. In small intestinal ICCs, 5-HT depolarized the membrane potentials transiently. Adenylate cyclase inhibitors or HCN blockers did not show any influence on 5-HT-induced effects. Anoctamin-1 (ANO1) or T-type Ca2+ channel blockers inhibited the pacemaker activity of colonic ICCs and blocked 5-HT-induced effects. A tyrosine protein kinase inhibitor inhibited pacemaker activity in colonic ICCs under controlled conditions but did not show any influence on 5-HT-induced effects. Among mitogen-activated protein kinase (MAPK) inhibitors, a p38 MAPK inhibitor inhibited 5-HT-induced effects on colonic ICCs. Thus, 5-HT's effect on pacemaker activity in small intestinal and colonic ICCs has excitatory but variable patterns. ANO1, T-type Ca2+, and HCN channels are involved in 5-HT-induced effects, and MAPKs are involved in 5-HT effects in colonic ICCs.


Assuntos
Doenças do Colo , Células Intersticiais de Cajal , Animais , Camundongos , Masculino , Serotonina/farmacologia , Células Intersticiais do Testículo , Inibidores de Adenilil Ciclases , Bloqueadores dos Canais de Cálcio , Inibidores de Proteínas Quinases
2.
Cell Mol Biol (Noisy-le-grand) ; 69(2): 67-73, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37224044

RESUMO

Adenosine plays an important role on gastrointestinal (GI) motility through adenosine receptors. Interstitial cells of Cajal (ICC) are pacemaker cells that regulate GI smooth muscle activity. The functional role and its signal mechanism of adenosine on the pacemaker activity were investigated using whole-cell patch clamp, RT-PCR, and intracellular Ca2+-imaging with ICC from mouse colon. Adenosine depolarized the membrane potentials and increased the pacemaker potential frequency, which was blocked by a selective A1-receptor antagonist, but not A2a-, A2b, or A3-receptor antagonist. A selective A1 receptor agonist represented similar effects as those of adenosine and mRNA transcript of A1-receptor was expressed in ICC. The adenosine-induced effects were blocked by phospholipase C (PLC) and a Ca2+-ATPase inhibitor. Adenosine increased spontaneous intracellular Ca2+ oscillations, as seen fluo4/AM. Both hyperpolarization-activated cyclic nucleotide (HCN) channel inhibitors and adenylate cyclase inhibitors blocked the adenosine-induced effects. And adenosine increased the basal cellular adenylate cyclase activity in colonic ICC. However, adenosine and adenylate cyclase inhibitors did not show any influence on pacemaker activity in small intestinal ICC for a comparison with that of the small intestine. These results suggest adenosine modulates the pacemaker potentials by acting HCN channels- and intracellular Ca2+- dependent mechanisms through A1-receptor. Therefore, adenosine may be a therapeutic target in colonic motility disorders.


Assuntos
Células Intersticiais de Cajal , Animais , Camundongos , Inibidores de Adenilil Ciclases , Cálcio , Adenosina/farmacologia , Colo
3.
J Cell Mol Med ; 26(19): 4911-4923, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35560982

RESUMO

Tricyclic antidepressants (TCAs) have been used to treat depression and were recently approved for treating irritable bowel syndrome (IBS) patients with severe or refractory IBS symptoms. However, the molecular mechanism of TCA action in the gastrointestinal (GI) tract remains poorly understood. Transient receptor potential channel canonical type 4 (TRPC4), which is a Ca2+ -permeable nonselective cation channel, is a critical regulator of GI excitability. Herein, we investigated whether TCA modulates TRPC4 channel activity and which mechanism in colonic myocytes consequently causes constipation. To prove the clinical benefit in patients with diarrhoea caused by TCA treatment, we performed mechanical tension recording of repetitive motor pattern (RMP) in segment, electric field stimulation (EFS)-induced and spontaneous contractions in isolated muscle strips. From these recordings, we observed that all TCA compounds significantly inhibited contractions of colonic motility in human. To determine the contribution of TRPC4 to colonic motility, we measured the electrical activity of heterologous or endogenous TRPC4 by TCAs using the patch clamp technique in HEK293 cells and murine colonic myocytes. In TRPC4-overexpressed HEK cells, we observed TCA-evoked direct inhibition of TRPC4. Compared with TRPC4-knockout mice, we identified that muscarinic cationic current (mIcat ) was suppressed through TRPC4 inhibition by TCA in isolated murine colonic myocytes. Collectively, we suggest that TCA action is responsible for the inhibition of TRPC4 channels in colonic myocytes, ultimately causing constipation. These findings provide clinical insights into abnormal intestinal motility and medical interventions aimed at IBS therapy.


Assuntos
Síndrome do Intestino Irritável , Canais de Cátion TRPC , Animais , Antidepressivos Tricíclicos/farmacologia , Cátions/metabolismo , Colinérgicos , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Células Musculares/metabolismo , Receptores Muscarínicos/metabolismo , Canais de Cátion TRPC/genética
4.
J Cell Mol Med ; 26(2): 364-374, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845842

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels function as pacemaker channels in spontaneously active cells. We studied the existence of HCN channels and their functional roles in the interstitial cells of Cajal (ICC) from the mouse colon using electrophysiological, immunohistochemical and molecular techniques. HCN1 and HCN3 channels were detected in anoctamin-1 (Ca2+ -activated Cl- channel; ANO1)-positive cells within the muscular and myenteric layers in colonic tissues. The mRNA transcripts of HCN1 and HCN3 channels were expressed in ANO1-positive ICC. In the deletion of HCN1 and HCN3 channels in colonic ICC, the pacemaking potential frequency was reduced. Basal cellular adenylate cyclase activity was decreased by adenylate cyclase inhibitor in colonic ICC, whereas cAMP-specific phosphodiesterase inhibitors increased it. 8-Bromo-cyclic AMP and rolipram increased spontaneous intracellular Ca2+ oscillations. In addition, Ca2+ -dependent adenylate cyclase 1 (AC1) mRNA was detected in colonic ICC. Sulprostone, a PGE2 -EP3 agonist, increased the pacemaking potential frequency, maximum rate of rise of resting membrane in pacemaker potentials and basal cellular adenylate cyclase activity in colonic ICC. These results indicate that HCN channels exist in colonic ICC and participate in generating pacemaking potentials. Thus, HCN channels may be therapeutic targets in disturbed colonic motility disorders.


Assuntos
Células Intersticiais de Cajal , Animais , Colo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Células Intersticiais de Cajal/fisiologia , Camundongos
5.
Part Fibre Toxicol ; 17(1): 25, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527278

RESUMO

BACKGROUND: Epidemiologic studies have suggested that elevated concentrations of particulate matter (PM) are strongly associated with an increased risk of developing cardiovascular diseases, including arrhythmia. However, the cellular and molecular mechanisms by which PM exposure causes arrhythmia and the component that is mainly responsible for this adverse effect remains to be established. In this study, the arrhythmogenicity of mobilized organic matter from two different types of PM collected during summer (SPM) and winter (WPM) seasons in the Seoul metropolitan area was evaluated. In addition, differential effects between polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (oxy-PAHs) on the induction of electrophysiological instability were examined. RESULTS: We extracted the bioavailable organic contents of ambient PM, measuring 10 µm or less in diameter, collected from the Seoul metropolitan area using a high-volume air sampler. Significant alterations in all factors tested for association with electrophysiological instability, such as intracellular Ca2+ levels, reactive oxygen species (ROS) generation, and mRNA levels of the Ca2+-regulating proteins, sarcoplasmic reticulum Ca2+ATPase (SERCA2a), Ca2+/calmodulin-dependent protein kinase II (CaMK II), and ryanodine receptor 2 (RyR2) were observed in cardiomyocytes treated with PM. Moreover, the alterations were higher in WPM-treated cardiomyocytes than in SPM-treated cardiomyocytes. Three-fold more oxy-PAH concentrations were observed in WPM than SPM. As expected, electrophysiological instability was induced higher in oxy-PAHs (9,10-anthraquinone, AQ or 7,12-benz(a) anthraquinone, BAQ)-treated cardiomyocytes than in PAHs (anthracene, ANT or benz(a) anthracene, BaA)-treated cardiomyocytes; oxy-PAHs infusion of cells mediated by aryl hydrocarbon receptor (AhR) was faster than PAHs infusion. In addition, ROS formation and expression of calcium-related genes were markedly more altered in cells treated with oxy-PAHs compared to those treated with PAHs. CONCLUSIONS: The concentrations of oxy-PAHs in PM were found to be higher in winter than in summer, which might lead to greater electrophysiological instability through the ROS generation and disruption of calcium regulation.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Oxigênio/química , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Atmosféricos/química , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Células Cultivadas , Peroxidação de Lipídeos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Tamanho da Partícula , Material Particulado/química , Técnicas de Patch-Clamp , Hidrocarbonetos Policíclicos Aromáticos/química , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Estações do Ano , Seul
6.
J Neurogastroenterol Motil ; 26(4): 521-528, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32321198

RESUMO

Background/Aims: To investigate an effect of ML204 (an inhibitor of transient receptor potential canonical 4 and 5 [TRPC4/5] channels) on interstitial cells of Cajal (ICCs) and therefore determine whether TRPC4/5 channels act on ICC-generated pacemaker activity. Methods: We enforced whole cell patch clamp analysis, measurements of the intracellular Ca2+ concentration, and reverse transcription polymerase chain reaction to determine the effect of ML204 (10 µM) or englerin A (a selective activator of TRPC4/5 channeles, 10 µM) and the existence of TRPC4/5 in mouse small intestinal ICC. Results: Treatment of ICCs with ML204 or englerin A caused the membrane potentials to depolarize. This depolarization effect of membrane potentials by ML204 in ICCs was observed to be concentration-dependent. After treating Ca2+- and Na+-free solutions or flufenamic acid (a non-selective cation channel blocker), the pacemaker potentials in the ICCs were abolished. A specific anoctamin 1 channel blocker did not have any effect on the pacemaker activity in ML204-untreated control cells; however, they blocked ML204-induced pacemaker activity in ICCs. Specific primers designed against TRPC4 and TRPC5 detected the presence of TRPC4/5 in small intestinal ICCs, and the application of ML204 increased raise the frequency of Ca2+ oscillations in ICCs, as assessed using Fluo-4 AM. Conclusion: The results implied that ML204 could not inhibit the pacemaker activity but depolarized the membrane potential of ICCs by regulating intracellular Ca2+ oscillations and anoctamin 1 channels.

7.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118620, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31812495

RESUMO

Protein S-palmitoylation, the covalent lipid modification of the side chain of Cys residues with the 16­carbon fatty acid palmitate, is the most common acylation, and it enhances the membrane stability of ion channels. This post-translational modification (PTM) determines a functional mechanism of ion channel life cycle from maturation and membrane trafficking to localization. Especially, neurodevelopment is regulated by balancing the level of synaptic protein palmitoylation/depalmitoylation. Recently, we revealed the pathological role of the transient receptor potential canonical type 5 (TRPC5) channel in striatal neuronal loss during Huntington's disease (HD), which is abnormally activated by oxidative stress. Here, we report a mechanism of TRPC5 palmitoylation at a conserved cysteine residue, that is critical for intrinsic channel activity. Furthermore, we identified the therapeutic effect of TRPC5 depalmitoylation by enhancing the TRPC5 membrane instability on HD striatal cells in order to lower TRPC5 toxicity. Collectively, these findings suggest that controlling S-palmitoylation of the TRPC5 channel as a potential risk factor can modulate TRPC5 channel expression and activity, providing new insights into a therapeutic strategy for neurodegenerative diseases.


Assuntos
Neurônios/metabolismo , Estresse Oxidativo , Canais de Cátion TRPC/metabolismo , Motivos de Aminoácidos , Animais , Antineoplásicos Alquilantes/toxicidade , Apoptose/efeitos dos fármacos , Carmustina/toxicidade , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Lipoilação/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Estresse Oxidativo/efeitos dos fármacos , Palmitatos/farmacologia , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Canais de Cátion TRPC/química , Canais de Cátion TRPC/genética
8.
Cell Physiol Biochem ; 51(6): 2887-2899, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30562749

RESUMO

BACKGROUND/AIMS: Anoctamin1 (Ca2+-activated Cl- channel, ANO1) is a specific marker of the interstitial cells of Cajal (ICC) in the gastrointestinal tract, and are candidate proteins that can function as pacemaker channels. Recently, novel selective ANO1 inhibitors were discovered and used to study Ca2+-activated Cl- channels. Therefore, to investigate whether ANO1 channels function as pacemaker channels, selective ANO1 inhibitors were tested with respect to the pacemaker potentials in ICC. METHODS: Whole-cell patch-clamp recording, RT-PCR, and intracellular Ca2+ ([Ca2+]i) imaging were performed in cultured ICC obtained from mice. RESULTS: Though CaCCinh-A01 (5 µM), T16Ainh-A01 (5 µM), and MONNA (5 µM) (selective ANO1 inhibitors) blocked the generation of pacemaker potentials in colonic ICC, they did not do so in small intestinal ICC. Though nifulmic acid (10 µM) and DIDS (10 µM) (classical Ca2+-activated Cl- channel inhibitors) also had no effect in small intestinal ICC, they suppressed the generation of pacemaker potentials in colonic ICC. In addition, knockdown of ANO1 reduced the pacemaker potential frequency in colonic ICC alone. Though ANO1 inhibitors suppressed [Ca2+]i oscillations in colonic ICC, they did not do so in small intestinal ICC. T-type Ca2+ channels were expressed in the both the small intestinal and colonic ICC, but mibefradil (5 µM) and NiCl2 (30 µM) (T-type Ca2+ channel inhibitors) inhibited the generation of pacemaker potentials in colonic ICC alone. CONCLUSION: These results indicate that though ANO1 and T-type Ca2+ channels participate in generating pacemaker potentials in colonic ICC, they do not do so in small intestinal ICC. Therefore, the mechanisms underlying pacemaking in ICC might be different in the small intestine and the colon.


Assuntos
Anoctamina-1/antagonistas & inibidores , Células Intersticiais de Cajal/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Pirimidinas/farmacologia , Tiazóis/farmacologia , Tiofenos/farmacologia , ortoaminobenzoatos/farmacologia , Animais , Anoctamina-1/metabolismo , Cálcio/metabolismo , Células Cultivadas , Feminino , Células Intersticiais de Cajal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Técnicas de Patch-Clamp
9.
Chonnam Med J ; 54(1): 63-71, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29399568

RESUMO

Purinergic receptors play an important role in regulating gastrointestinal (GI) motility. Interstitial cells of Cajal (ICCs) are pacemaker cells that regulate GI smooth muscle activity. We studied the functional roles of external adenosine 5'-triphosphate (ATP) on pacemaker activity in cultured ICCs from mouse small intestines by using the whole-cell patch clamp technique and intracellular Ca2+ ([Ca2+]i) imaging. External ATP dose-dependently depolarized the resting membrane and produced tonic inward pacemaker currents, and these effects were antagonized by suramin, a purinergic P2 receptor antagonist. ATP-induced effects on pacemaker currents were suppressed by an external Na+-free solution and inhibited by the nonselective cation channel blockers, flufenamic acid and niflumic acid. The removal of external Ca2+ or treatment with thapsigargin (inhibitor of Ca2+ uptake into endoplasmic reticulum) inhibited the ATP-induced effects on pacemaker currents. Spontaneous [Ca2+]i oscillations were enhanced by external ATP. These results suggest that external ATP modulates pacemaker activity by activating nonselective cation channels via external Ca2+ influx and [Ca2+]i release from the endoplasmic reticulum. Thus, it seems that activating the purinergic P2 receptor may modulate GI motility by acting on ICCs in the small intestine.

10.
J Neurogastroenterol Motil ; 24(1): 128-137, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28774158

RESUMO

BACKGROUND/AIMS: We investigated the role of representative endoplasmic reticulum proteins, stromal interaction molecule 1 (STIM1), and store-operated calcium entry-associated regulatory factor (SARAF) in pacemaker activity in cultured interstitial cells of Cajal (ICCs) isolated from mouse small intestine. METHODS: The whole-cell patch clamp technique applied for intracellular calcium ions ([Ca2+]i) analysis with STIM1 or SARAF overexpressed cultured ICCs from mouse small intestine. RESULTS: In the current-clamping mode, cultured ICCs displayed spontaneous pacemaker potentials. External carbachol exposure produced tonic membrane depolarization in the current-clamp mode, which recovered within a few seconds into normal pacemaker potentials. In STIM1-overexpressing cultured ICCs pacemaker potential frequency was increased, and in SARAF-overexpressing ICCs pacemaker potential frequency was strongly inhibited. The application of gadolinium (a non-selective cation channel inhibitor) or a Ca2+-free solution to understand Orai channel involvement abolished the generation of pacemaker potentials. When recording intracellular Ca2+ concentration with Fluo 3-AM, STIM1-overexpressing ICCs showed an increased number of spontaneous intracellular Ca2+ oscillations. However, SARAF-overexpressing ICCs showed fewer spontaneous intracellular Ca2+ oscillations. CONCLUSION: Endoplasmic reticulum proteins modulated the frequency of pacemaker activity in ICCs, and levels of STIM1 and SARAF may determine slow wave patterns in the gastrointestinal tract.

11.
Naunyn Schmiedebergs Arch Pharmacol ; 390(9): 961-969, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28685234

RESUMO

EP receptor activation by PGE2 regulates gastrointestinal motility by modulating smooth muscle contractility. Interstitial cells of Cajal (ICCs) are pacemaker cells that regulate smooth muscle activity. We aimed to determine effects of the EP3 receptor agonist sulprostone on pacemaker potentials in colonic ICCs. We performed a whole cell patch clamp, RT-PCR, and Ca2+ imaging in cultured ICCs from mouse colon. Sulprostone depolarized the membrane and increased pacemaker frequency. EP3 receptor antagonist blocked these sulprostone-induced effects. EP3 receptors were expressed in ANO1-positive ICCs. Phospholipase C inhibitor or Ca2+-ATPase inhibitor from the endoplasmic reticulum blocked the sulprostone-induced effects and sulprostone increased intracellular Ca2+ ([Ca2+]i) oscillations. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers also suppressed the sulprostone-induced effects. Sulprostone enhanced pacemaker activity through EP3 receptors by activating HCN channels via the [Ca2+]i release pathway. Therefore, EP3 receptor activation in ICCs may modulate colonic motility and could be a therapeutic target for enhancing colonic GI motility.


Assuntos
Colo/efeitos dos fármacos , Dinoprostona/análogos & derivados , Células Intersticiais de Cajal/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP3/agonistas , Animais , Anoctamina-1/metabolismo , Cálcio/metabolismo , Células Cultivadas , Colo/citologia , Dinoprostona/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Células Intersticiais de Cajal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Técnicas de Patch-Clamp , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Eur J Pharmacol ; 809: 98-104, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28511870

RESUMO

To investigate the role of ATP-sensitive K+(KATP) channels on pacemaker activity in interstitial cells of Cajal (ICC), whole-cell patch clamping, RT-PCR, and intracellular Ca2+([Ca2+]i) imaging were performed in cultured colonic ICC. Pinacidil (a K+ channel opener) hyperpolarized the membrane and inhibited the generation of pacemaker potential, and this effect was reversed by glibenclamide (a KATP channel blocker). RT-PCR showed that Kir 6.1 and SUR2B were expressed in Ano-1 positive colonic ICC. Glibenclamide depolarized the membrane and increased pacemaker potential frequency. However, 5-hydroxydecanoic acid (a mitochondrial KATP channel blocker) had no effects on pacemaker potentials. Phorbol 12-myristate 13-acetate (PMA; a protein kinase C activator) blocked the pinacidil-induced effects, and PMA alone depolarized the membrane and increased pacemaker potential frequency. Cell-permeable 8-bromo-cyclic AMP also increased pacemaker potential frequency. Recordings of spontaneous intracellular Ca2+([Ca2+]i) oscillations showed that glibenclamide increased the frequency of [Ca2+]i oscillations. In small intestinal ICC, glibenclamide alone did not alter the generation of pacemaker potentials, and Kir 6.2 and SUR2B were expressed in Ano-1 positive ICC. Therefore, KATP channels in colonic ICC are activated in resting state and play an important role in maintaining resting membrane potential.


Assuntos
Colo/citologia , Células Intersticiais de Cajal/citologia , Células Intersticiais de Cajal/metabolismo , Canais KATP/metabolismo , Potenciais da Membrana , Animais , Cálcio/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células Intersticiais de Cajal/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Pinacidil/farmacologia , Proteína Quinase C/metabolismo
13.
Pharmacology ; 98(3-4): 171-82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27265408

RESUMO

BACKGROUND AND PURPOSE: The exact mechanism of protease-activated receptors (PARs) on pacemaker activity of interstitial cells of Cajal (ICCs) has not been reported. We investigated the effects on pacemaker activity by the activation of PARs and its signal mechanisms in colonic ICCs. METHODS: The whole-cell patch-clamp technique, RT-PCR and Ca2+ imaging were used in cultured ICCs from mouse colon. RESULTS: PAR-1 and PAR-2 were expressed in Ano-1 positive ICCs. TFLLR-NH2 (a PAR-1 agonist) and trypsin (a PAR-2 agonist) depolarized the membrane and increased the pacemaker potential frequency. U-73122 (a phospholipase C (PLC) inhibitor) and thapsigargin (a Ca2+ ATPase inhibitor) suppressed the TFLLR-NH2- and trypsin-induced effects on pacemaker potential. TFLLR-NH2 and trypsin also increased intracellular Ca2+ ([Ca2+]i) intensity with increasing of Ca2+ oscillations. Genistein (a tyrosine kinase inhibitor), SP600125 (a JNK inhibitor), CsCl, ZD7288, clonidine (hyperpolarization-activated cyclic nucleotide (HCN) channel blockers), SQ-22536 and dideoxyadenosine (adenylate cyclase inhibitors) suppressed the increased pacemaker potential frequency without effects on depolarization of the membrane induced by TFLLR-NH2 and trypsin. CONCLUSION: These results suggest that activation of PAR-1 and PAR-2 modulates the pacemaker activity of colonic ICCs through the PLC-dependent [Ca2+]i release pathway. The increased pacemaker potential frequency by PAR-1 and PAR-2 was also dependent on tyrosine kinase, JNK, and HCN activation.


Assuntos
Colo/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Células Intersticiais de Cajal/fisiologia , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Animais , Colo/citologia , Colo/efeitos dos fármacos , Feminino , Células Intersticiais de Cajal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oligopeptídeos/farmacologia , Técnicas de Patch-Clamp , Receptor PAR-1/agonistas , Receptor PAR-2/agonistas , Receptores Ativados por Proteinase/metabolismo
14.
Kidney Res Clin Pract ; 35(1): 15-21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27069853

RESUMO

BACKGROUND: Chronic treatment with the dietary flavonoid quercetin is known to lower blood pressure and restore endothelial dysfunction in animal models of hypertension. This study investigated the direct effects of quercetin on vascular response in chronic 2-kidney, 1-clip (2K1C) renal hypertensive rats. The effects of antioxidant vitamin ascorbic acid on the vasoreactivity were also examined. METHODS: 2K1C renal hypertension was induced by clipping the left renal artery; age-matched rats that received sham treatment served as controls. Thoracic aortae were mounted in tissue baths for the measurement of isometric tension. RESULTS: Relaxant responses to acetylcholine were significantly attenuated in 2K1C rats in comparison with sham rats. Quercetin or ascorbic acid augmented acetylcholine-induced relaxation in 2K1C rats, whereas no significant differences were noted in sham rats. The relaxation response to sodium nitroprusside was comparable between 2K1C and sham rats, and sodium nitroprusside-induced relaxation was not altered by quercetin or ascorbic acid in either group. The contractile response to phenylephrine was significantly enhanced in 2K1C rats compared with sham rats. Phenylephrine-induced contraction was inhibited by pretreatment with quercetin or ascorbic acid in 2K1C rats, whereas neither chemical affected responses in sham rats. N(w)-nitro-L-arginine methyl ester markedly augmented the contractile response to phenylephrine in sham rats, whereas no significant differences were observed in 2K1C rats. Quercetin or ascorbic acid did not affect phenylephrine-induced contraction in the presence of N(w)-nitro-L-arginine methyl ester in either 2K1C or sham rats. CONCLUSION: Acute exposure to quercetin appears to improve endothelium-dependent relaxation and inhibit the contractile response, similar to the effect of ascorbic acid in 2K1C hypertension. These results partially explain the vascular beneficial effects of quercetin in renal hypertension.

15.
Korean J Physiol Pharmacol ; 19(5): 435-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26330756

RESUMO

This study aimed to investigate the effect of pituitary adenylate cyclase-activating peptide (PACAP) on the pacemaker activity of interstitial cells of Cajal (ICC) in mouse colon and to identify the underlying mechanisms of PACAP action. Spontaneous pacemaker activity of colonic ICC and the effects of PACAP were studied using electrophysiological recordings. Exogenously applied PACAP induced hyperpolarization of the cell membrane and inhibited pacemaker frequency in a dose-dependent manner (from 0.1 nM to 100 nM). To investigate cyclic AMP (cAMP) involvement in the effects of PACAP on ICC, SQ-22536 (an inhibitor of adenylate cyclase) and cell-permeable 8-bromo-cAMP were used. SQ-22536 decreased the frequency of pacemaker potentials, and cell-permeable 8-bromo-cAMP increased the frequency of pacemaker potentials. The effects of SQ-22536 on pacemaker potential frequency and membrane hyperpolarization were rescued by co-treatment with glibenclamide (an ATP-sensitive K(+) channel blocker). However, neither N (G)-nitro-L-arginine methyl ester (L-NAME, a competitive inhibitor of NO synthase) nor 1H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) had any effect on PACAP-induced activity. In conclusion, this study describes the effects of PACAP on ICC in the mouse colon. PACAP inhibited the pacemaker activity of ICC by acting through ATP-sensitive K(+) channels. These results provide evidence of a physiological role for PACAP in regulating gastrointestinal (GI) motility through the modulation of ICC activity.

16.
Clin Exp Otorhinolaryngol ; 8(2): 83-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26045904

RESUMO

OBJECTIVES: In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae. METHODS: HMSCs were isolated from the bone marrow which was obtained from the mastoid process during mastoidectomy for ear surgery. Following neural induction with basic fibroblast growth factor and forskolin, we studied the several neural marker and performed electrophysiological analysis. NI-hMSCs were transplanted into the neomycin treated deafened guinea pig cochlea. Engraftment of NI-hMSCs was evaluated immunohistologically at 8 weeks after transplantation. RESULTS: Following neural differentiation, hMSCs expressed high levels of neural markers, ionic channel markers, which are important in neural function, and tetrodotoxin-sensitive voltage-dependent sodium currents. After transplantation into the scala tympani of damaged cochlea, NI-hMSCs-injected animals exhibited a significant increase in the number of SGNs compared to Hanks balanced salt solution-injected animals. Transplanted NI-hMSCs were found within the perilymphatic space, the organ of Corti, along the cochlear nerve fibers, and in the spiral ganglion. Furthermore, the grafted NI-hMSCs migrated into the spiral ganglion where they expressed the neuron-specific marker, NeuN. CONCLUSION: The results show the potential of NI-hMSCs to give rise to replace the lost cochlear cells in hearing loss mammals.

17.
Pharmacology ; 96(1-2): 16-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26043726

RESUMO

BACKGROUND AND PURPOSE: Mitogen-activated protein (MAP) and tyrosine kinases play an important role in regulating smooth muscle contraction of the gastrointestinal (GI) tract. Interstitial cells of Cajal (ICCs) are pacemaker cells that regulate GI smooth muscle activity. Thus, the role of MAP and tyrosine kinases on the pacemaker potentials of colonic ICCs was investigated. METHODS: Cultured ICCs were prepared from mice colons, and their pacemaker potentials were recorded using whole-cell patch clamping. RESULTS: In current-clamping mode, colonic ICCs displayed spontaneous pacemaker potentials. SB203580 (a p38 MAP kinase inhibitor), SP600125 (a c-jun NH2-terminal kinase (JNK) inhibitor), genistein and herbimycin A (tyrosine kinase inhibitors) blocked the generation of pacemaker potentials. However, PD98059 (a p42/44 MAP kinase inhibitor) had no effects on pacemaker potentials. LY-294002 (phosphoinositide 3-kinase inhibitor) also reduced the pacemaker potential frequency but calphostin C and chelerythrine (protein kinase C inhibitors) had no effects. However, PD98059, SB203589, SP600125, genistein, herbimycin A, LY-294002, and calphostin C had no effect on normal pacemaker activity in small intestinal ICCs. CONCLUSIONS: Endogenous p38 MAP kinases, JNKs, tyrosine kinases, and PI3-kinases participate in the generation of pacemaker potentials in colonic ICCs but not in ICCs of the small intestine.


Assuntos
Colo/fisiologia , Células Intersticiais de Cajal/enzimologia , Células Intersticiais de Cajal/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteínas Tirosina Quinases/fisiologia , Animais , Antracenos/farmacologia , Benzofenantridinas/farmacologia , Células Cultivadas , Cromonas/farmacologia , Colo/efeitos dos fármacos , Flavonoides/farmacologia , Genisteína/farmacologia , Imidazóis/farmacologia , Células Intersticiais de Cajal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Morfolinas/farmacologia , Naftalenos/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridinas/farmacologia , Rifabutina/análogos & derivados , Rifabutina/farmacologia
18.
Eur J Pharmacol ; 754: 32-40, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25725113

RESUMO

We investigated the presence of ß3-adrenoceptor and its functional effects on pacemaker potentials in colonic interstitial cells of Cajal (ICCs) from mice. The whole-cell patch clamp technique was used to record pacemaker potentials in cultured ICCs and reverse transcription polymerase chain reaction (RT-PCR) was performed to detect the mRNA transcript levels ß-adrenoceptors. The ß3-adrenoceptor agonist, BRL37344, reduced the frequency of pacemaker potentials in a concentration-dependent manner. The inhibitory effects of BRL37344 were blocked by the pretreatment of propranolol, a nonspecific ß-adrenoceptor antagonist, but not by the selective ß1-adrenoceptor antagonist atenolol and the selective ß2-adrenoceptor antagonist butoxamine. ß3-adrenoceptor antagonists SR59230A and L748337 blocked the inhibitory effects of BRL37344. RT-PCR revealed mRNA transcripts of ß1- and ß3-adrenoceptor, but not ß2-adrenoceptor, in c-kit- and Ano-1-positive colonic ICCs. The K(+) channel blockers tetraethylammonium, apamin, and glibenclamide did not block the effects of BRL37344. N(ω)-Nitro-l-arginine methyl ester hydrochloride (L-NAME), an NO synthase inhibitor, and chelerythrine, a protein kinase C inhibitor, also did not block the effects of BRL37344. Noradrenaline mimicked the effects of BRL37344 in colonic ICCs. However, the inhibitory effects of noradrenaline on pacemaker potentials were blocked only by pretreatment with atenolol but not by butoxamine, SR59230A, or L748337. In small intestinal ICCs, BRL37344 had no effect on pacemaker potentials and mRNA transcripts of ß1-and ß2-adrenoceptor, but not ß3-adrenoceptor were detected. These results suggest that ß3-adrenoceptors are present in colonic ICCs and may play a role in regulating gastrointestinal motility by the inhibition of pacemaker potentials.


Assuntos
Relógios Biológicos/fisiologia , Colo/citologia , Células Intersticiais de Cajal/fisiologia , Receptores Adrenérgicos beta 3/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Aminofenóis/farmacologia , Animais , Atenolol/farmacologia , Benzofenantridinas/farmacologia , Relógios Biológicos/efeitos dos fármacos , Butoxamina/farmacologia , Cálcio/metabolismo , Colo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Etanolaminas/antagonistas & inibidores , Etanolaminas/farmacologia , Feminino , Células Intersticiais de Cajal/efeitos dos fármacos , Células Intersticiais de Cajal/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Norepinefrina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Propanolaminas/farmacologia , Propranolol/farmacologia , Receptores Adrenérgicos beta 3/biossíntese , Sulfonamidas/farmacologia
19.
Korean J Physiol Pharmacol ; 18(4): 341-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25177167

RESUMO

Lubiprostone is a chloride (Cl(-)) channel activator derived from prostaglandin E1 and used for managing constipation. In addition, lubiprostone affects the activity of gastrointestinal smooth muscles. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow-wave activity in smooth muscles. We studied the effects of lubiprostone on the pacemaker potentials of colonic ICCs. We used the whole-cell patch-clamp technique to determine the pacemaker activity in cultured colonic ICCs obtained from mice. Lubiprostone hyperpolarized the membrane and inhibited the generation of pacemaker potentials. Prostanoid EP1, EP2, EP3, and EP4 antagonists (SC-19220, PF-04418948, 6-methoxypyridine-2-boronc acid N-phenyldiethanolamine ester, and GW627368, respectively) did not block the response to lubiprostone. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) did not block the response to lubiprostone. In addition, tetraethylammonium (TEA, a voltage-dependent potassium [K(+)] channel blocker) and apamin (a calcium [Ca(2+)]-dependent K(+) channel blocker) did not block the response to lubiprostone. However, glibenclamide (an ATP-sensitive K(+) channel blocker) blocked the response to lubiprostone. Similar to lubiprostone, pinacidil (an opener of ATP-sensitive K(+) channel) hyperpolarized the membrane and inhibited the generation of pacemaker potentials, and these effects were inhibited by glibenclamide. These results suggest that lubiprostone can modulate the pacemaker potentials of colonic ICCs via activation of ATP-sensitive K(+) channel through a prostanoid EP receptor-independent mechanism.

20.
Cell Physiol Biochem ; 34(3): 873-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25199952

RESUMO

BACKGROUND/AIMS: Ginseng regulates gastrointestinal (GI) motor activity but the underlying components and molecular mechanisms are unknown. We investigated the effect of gintonin, a novel ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, on the pacemaker activity of the interstitial cells of Cajal (ICC) in murine small intestine and GI motility. MATERIALS AND METHODS: Enzymatic digestion was used to dissociate ICC from mouse small intestines. The whole-cell patch-clamp configuration was used to record pacemaker potentials and currents from cultured ICC in the absence or presence of gintonin. In vivo effects of gintonin on gastrointestinal (GI) motility were investigated by measuring the intestinal transit rate (ITR) of Evans blue in normal and streptozotocin (STZ)-induced diabetic mice. RESULTS: We investigated the effects of gintonin on pacemaker potentials and currents in cultured ICC from mouse small intestine. Gintonin caused membrane depolarization in current clamp mode but this action was blocked by Ki16425, an LPA1/3 receptor antagonist, and by the addition of GDPßS, a GTP-binding protein inhibitor, into the ICC. To study the gintonin signaling pathway, we examined the effects of U-73122, an active PLC inhibitor, and chelerythrine and calphostin, which inhibit PKC. All inhibitors blocked gintonin actions on pacemaker potentials, but not completely. Gintonin-mediated depolarization was lower in Ca(2+)-free than in Ca(2+)-containing external solutions and was blocked by thapsigargin. We found that, in ICC, gintonin also activated Ca(2+)-activated Cl(-) channels (TMEM16A, ANO1), but not TRPM7 channels. In vivo, gintonin (10-100 mg/kg, p.o.) not only significantly increased the ITR in normal mice but also ameliorated STZ-induced diabetic GI motility retardation in a dose-dependent manner. CONCLUSIONS: Gintonin-mediated membrane depolarization of pacemaker activity and ANO1 activation are coupled to the stimulation of GI contractility through LPA1/3 receptor signaling pathways in cultured murine ICC. Gintonin might be a ingredient responsible for ginseng-mediated GI tract modulations, and could be a novel candidate for development as a prokinetic agent that may prevent or alleviate GI motility dysfunctions in human patients.


Assuntos
Relógios Biológicos , Glicoproteínas/farmacologia , Células Intersticiais de Cajal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Animais , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Células Cultivadas , Diabetes Mellitus Experimental/fisiopatologia , Motilidade Gastrointestinal/efeitos dos fármacos , Células Intersticiais de Cajal/fisiologia , Intestino Delgado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Técnicas de Patch-Clamp , Proteína Quinase C/antagonistas & inibidores , Estreptozocina , Fosfolipases Tipo C/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...