Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kidney360 ; (0)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303110

RESUMO

BACKGROUND: It is a major clinical challenge to ensure the long-term function of transplanted kidneys. Specifically, the injury associated with cold storage of kidneys compromises the long-term function of the grafts after transplantation. Therefore, the molecular mechanisms underlying cold-storage-related kidney injury are attractive therapeutic targets to prevent injury and improve long-term graft function. Previously, we found that constitutive proteasome function was compromised in rat kidneys after cold storage followed by transplantation. Here, we evaluated the role of the immunoproteasome (iproteasome), a proteasome variant, during cold storage (CS) followed by transplantation. METHODS: Established in vivo rat kidney transplant model with or without CS containing vehicle or iproteasome inhibitor (ONX 0914) was used in this study. The iproteasome function was performed using rat kidney homogenates and fluorescent-based peptide substrate specific to ß5i subunit. Western blotting and quantitative RT-PCR were used to assess the subunit expression/level of the iproteasome (ß5i) subunit. RESULTS: We demonstrated a decrease in the abundance of the ß5i subunit of the iproteasome in kidneys during CS, but ß5i levels increased in kidneys after CS and transplant. Despite the increase in ß5i levels and its peptidase activity within kidneys, inhibiting ß5i during CS did not improve graft function after transplantation. SUMMARY: These results suggest that the pharmacological inhibition of immunoproteasome function during CS does not improve graft function or outcome. In light of these findings, future studies targeting immunoproteasomes during both CS and transplantation may define the role of immunoproteasomes on short- and long-term kidney transplant outcomes.

2.
Microbiol Spectr ; 11(3): e0490122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36995227

RESUMO

Control of hospital-associated Enterococcus faecium infection is a strenuous task due to the difficulty of identifying transmission routes and the persistence of this nosocomial pathogen despite the implementation of infection control measures that have been successful with other important nosocomial pathogens. This study provides a comprehensive analysis of over 100 E. faecium isolates collected from 66 cancer patients at the University of Arkansas for Medical Sciences (UAMS) between June 2018 and May 2019. In the top-down approach used in this study, we employed, in addition to the 106 E. faecium UAMS isolates, a filtered set of 2,167 E. faecium strains from the GenBank database to assess the current population structure of E. faecium species and, consequently, to identify the lineages associated with our clinical isolates. We then evaluated the antibiotic resistance and virulence profiles of hospital-associated strains from the species pool, focusing on antibiotics of last resort, to establish an updated classification of high-risk and multidrug-resistant nosocomial clones. Further investigation of the clinical isolates collected from UAMS patients using whole-genome sequencing analytical methodologies (core genome multilocus sequence typing [cgMLST], core single nucleotide polymorphism [coreSNP] analysis, and phylogenomics), with the addition of patient epidemiological data, revealed a polyclonal outbreak of three sequence types occurring simultaneously in different patient wards. The integration of genomic and epidemiological data collected from the patients increased our understanding of the relationships and transmission dynamics of the E. faecium isolates. Our study provides new insights into genomic surveillance of E. faecium to assist in monitoring and further limiting the spread of multidrug-resistant E. faecium. IMPORTANCE Enterococcus faecium is a member of the gastrointestinal microbiota. Although its virulence is low in healthy, immunocompetent individuals, E. faecium has become the third leading cause of health care-associated infections in the United States. This study provides a comprehensive analysis of over 100 E. faecium isolates collected from cancer patients at the University of Arkansas for Medical Sciences (UAMS). We employed a top-down analytical approach (from population genomics to molecular biology) to classify our clinical isolates into their genetic lineages and thoroughly evaluate their antibiotic resistance and virulence profiles. The addition of patient epidemiological data to the whole-genome sequencing analytical methodologies performed in the study allowed us to increase our understanding of the relationships and transmission dynamics of the E. faecium isolates. This study provides new insights into genomic surveillance of E. faecium to help monitor and further limit the spread of multidrug-resistant E. faecium.


Assuntos
Infecção Hospitalar , Enterococcus faecium , Neoplasias , Humanos , Enterococcus faecium/genética , Arkansas/epidemiologia , Genômica , Resistência Microbiana a Medicamentos , Infecção Hospitalar/epidemiologia
3.
J Cardiovasc Nurs ; 38(2): 140-149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35507026

RESUMO

BACKGROUND: The relationships of patient factors and caregiver contribution to patients' self-care to different types of self-care have been rarely examined in Korean patients with heart failure. OBJECTIVE: The aim of this study was to examine patient (ie, age, depressive symptoms, and self-care confidence) and caregiver (ie, caregiver contribution to self-care maintenance and self-care management, and caregiver confidence in contributing to self-care) factors related to different types of self-care (ie, self-care maintenance, symptom perception, and self-care management) and self-care confidence in Korean patients with heart failure. METHODS: In this cross-sectional, correlational study, data from 41 pairs of patients (mean age, 68.0 years) and caregivers (mean age, 54.1 years) were collected and analyzed using multiple regression. RESULTS: Higher levels of self-care confidence in patients were related to higher levels of self-care maintenance in patients. Higher levels of self-care confidence in patients were related to higher levels of symptom perception. Higher levels of self-care confidence in patients and caregiver contribution to self-care maintenance were related to higher levels of self-care management. Less severe depressive symptoms in patients and higher levels of caregiver confidence in contributing to self-care were related to higher levels of self-care confidence. CONCLUSION: Different patient and caregiver factors were related to different types of self-care and self-care confidence in Korean patients, but patients' self-care confidence was related to all types of self-care. Clinicians and researchers need to develop and deliver effective interventions to both patients and their caregivers to improve patients' self-care confidence and, in turn, self-care, considering different factors associated with each type of self-care.


Assuntos
Cuidadores , Insuficiência Cardíaca , Humanos , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Autocuidado , Insuficiência Cardíaca/complicações , República da Coreia
4.
Adv Exp Med Biol ; 1386: 3-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258067

RESUMO

In this chapter, we leverage a novel approach to assess the seamless population structure of Pseudomonas aeruginosa, using the full repertoire of genomes sequenced to date (GenBank, April 6, 2020). In order to assess the set of core functions that represents the species as well as the differences in these core functions among the phylogroups observed in the population structure analysis, we performed pangenome analyses at the species level and at the phylogroup level. The existence of the phylogroups described in the population structure analyses was supported by their different profiles of antibiotic-resistant determinants. Finally, we utilized a presence/absence matrix of protein families from the entire species to evaluate if P. aeruginosa phylogroups can be differentiated according to their accessory genomic content. Our analysis shows that the core genome of P. aeruginosa is approximately 62% of the average gene content for the species, and it is highly enriched with pathways related to the metabolism of carbohydrates and amino acids as well as cellular processes and cell maintenance. The analysis of the accessory genome of P. aeruginosa performed in this chapter confirmed not only the existence of the three phylogroups previously described in the population structure analysis, but also of 29 genetic substructures (subgroups) within the main phylogroups. Our work illustrates the utility of populations genomics pipelines to better understand highly complex bacterial species such as P. aeruginosa.


Assuntos
Genoma Bacteriano , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Antibacterianos , Aminoácidos , Carboidratos , Filogenia
5.
Microb Genom ; 8(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35921144

RESUMO

Insertion sequences (ISs) and other transposable elements are associated with the mobilization of antibiotic resistance determinants and the modulation of pathogenic characteristics. In this work, we aimed to investigate the association between ISs and antibiotic resistance genes, and their role in the dissemination and modification of the antibiotic-resistant phenotype. To that end, we leveraged fully resolved Enterococcus faecium and Enterococcus faecalis genomes of isolates collected over 5 days from an inpatient with prolonged bacteraemia. Isolates from both species harboured similar IS family content but showed significant species-dependent differences in copy number and arrangements of ISs throughout their replicons. Here, we describe two inter-specific IS-mediated recombination events and IS-mediated excision events in plasmids of E. faecium isolates. We also characterize a novel arrangement of the ISs in a Tn1546-like transposon in E. faecalis isolates likely implicated in a vancomycin genotype-phenotype discrepancy. Furthermore, an extended analysis revealed a novel association between daptomycin resistance mutations in liaSR genes and a putative composite transposon in E. faecium, offering a new paradigm for the study of daptomycin resistance and novel insights into its dissemination. In conclusion, our study highlights the role ISs and other transposable elements play in the rapid adaptation and response to clinically relevant stresses such as aggressive antibiotic treatment in enterococci.


Assuntos
Bacteriemia , Daptomicina , Infecções por Bactérias Gram-Positivas , Antibacterianos/farmacologia , Bacteriemia/genética , Elementos de DNA Transponíveis/genética , Resistência Microbiana a Medicamentos , Enterococcus/genética , Humanos , Pacientes Internados , Testes de Sensibilidade Microbiana
7.
Microbiol Resour Announc ; 11(8): e0047422, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35894621

RESUMO

Here, we report the complete genome sequence of Providencia rettgeri isolate PROV_UAMS_01, which was recovered in 2021 from a urine sample from a hospitalized patient in Arkansas, USA. The genome sequence of P. rettgeri isolate PROV_UAMS_01 comprises a single chromosomal replicon with a G+C content of 40.51% and a total of 3,887 genes.

8.
Food Control ; 1322022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34629764

RESUMO

Vegetables may serve as a reservoir for antibiotic resistant bacteria and resistance genes. AmpC ß-lactamases and extended spectrum beta-lactamases (ESBL) inactivate commonly used ß-lactam antibiotics, including penicillins and cephalosporins. In this study, we determined the prevalence of AmpC and ESBL-producing Enterobacterales in retail vegetables in the United States. A total of 88 vegetable samples were collected for the screening of AmpC and ESBL-producing Enterobacterales using CHROMagar ESBL agar. These vegetables included washed ready-to-eat salad (23), microgreens/sprouts (13), lettuce (11), herbs (11), spinach (5), mushrooms (5), brussels sprouts (4), kale (3), and other vegetable samples (13). AmpC and ESBL activity in these isolates were determined using double disk combination tests. Two vegetable samples (2.27%), organic basil and brussels sprouts, were positive for AmpC-producing Enterobacterales and eight samples (9.09%), including bean sprouts, organic parsley, organic baby spinach, and several mixed salads, were positive for ESBL-producing Enterobacterales. Whole genome sequencing was used to identify the bacterial species and resistance genes in these isolates. Genes encoding AmpC ß-lactamases were found in Enterobacter hormaechei strains S43-1 and 74-2, which were consistent with AmpC production phenotypes. Multidrug-resistant E. hormaechei strains S11-1, S17-1, and S45-4 possess an ESBL gene, blaSHV66 , whereas five Serratia fonticola isolates contain genes encoding a minor ESBL, FONA-5. In addition, we used shotgun metagenomic sequencing approach to examine the microbiome and resistome profiles of three spinach samples. We found that Pseudomonas was the most prevalent bacteria genus in the spinach samples. Within the Enterobacteriaceae family, Enterobacter was the most abundant genus in the spinach samples. Moreover, antibiotic resistance genes encoding 12 major classes of antibiotics, including ß-lactam antibiotics, aminoglycoside, macrolide, fluoroquinolone, and others, were found in these spinach samples. Therefore, vegetables can serve as an important vehicle for transmitting antibiotic resistance. The study highlights the need for antibiotic resistance surveillance in vegetable products.

9.
Metabolites ; 11(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34436481

RESUMO

The acute radiation syndrome is defined in large part by radiation injury in the hematopoietic and gastrointestinal (GI) systems. To identify new pathways involved in radiation-induced GI injury, this study assessed dose- and time-dependent changes in plasma metabolites in a nonhuman primate model of whole abdominal irradiation. Male and female adult Rhesus monkeys were exposed to 6 MV photons to the abdomen at doses ranging between 8 and 14 Gy. At time points from 1 to 60 days after irradiation, plasma samples were collected and subjected to untargeted metabolomics. With the limited sample size of females, different discovery times after irradiation between males and females were observed in metabolomics pattern. Detailed analyses are restricted to only males for the discovery power. Radiation caused an increase in fatty acid oxidation and circulating levels of corticosteroids which may be an indication of physiological stress, and amino acids, indicative of a cellular repair response. The largest changes were observed at days 9 and 10 post-irradiation, with most returning to baseline at day 30. In addition, dysregulated metabolites involved in amino acid pathways, which might indicate changes in the microbiome, were detected. In conclusion, abdominal irradiation in a nonhuman primate model caused a plasma metabolome profile indicative of GI injury. These results point to pathways that may be targeted for intervention or used as early indicators of GI radiation injury. Moreover, our results suggest that effects are sex-specific and that interventions may need to be tailored accordingly.

11.
Front Bioeng Biotechnol ; 8: 556413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072720

RESUMO

Genomic DNA is the best "unique identifier" for organisms. Alignment-free phylogenomic analysis, simple, fast, and efficient method to compare genome sequences, relies on looking at the distribution of small DNA sequence of a particular length, referred to as k-mer. The k-mer approach has been explored as a basis for sequence analysis applications, including assembly, phylogenetic tree inference, and classification. Although this approach is not novel, selecting the appropriate k-mer length to obtain the optimal resolution is rather arbitrary. However, it is a very important parameter for achieving the appropriate resolution for genome/sequence distances to infer biologically meaningful phylogenetic relationships. Thus, there is a need for a systematic approach to identify the appropriate k-mer from whole-genome sequences. We present K-mer-length Iterative Selection for UNbiased Ecophylogenomics (KITSUNE), a tool for assessing the empirically optimal k-mer length of any given set of genomes of interest for phylogenomic analysis via a three-step approach based on (1) cumulative relative entropy (CRE), (2) average number of common features (ACF), and (3) observed common features (OCF). Using KITSUNE, we demonstrated the feasibility and reliability of these measurements to obtain empirically optimal k-mer lengths of 11, 17, and ∼34 from large genome datasets of viruses, bacteria, and fungi, respectively. Moreover, we demonstrated a feature of KITSUNE for accurate species identification for the two de novo assembled bacterial genomes derived from error-prone long-reads sequences, and for a published yeast genome. In addition, KITSUNE was used to identify the shortest species-specific k-mer accurately identifying viruses. KITSUNE is freely available at https://github.com/natapol/kitsune.

12.
Aging Cell ; 19(11): e13261, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33067900

RESUMO

Age-associated mitochondrial dysfunction and oxidative damage are primary causes for multiple health problems including sarcopenia and cardiovascular disease (CVD). Though the role of Nrf2, a transcription factor that regulates cytoprotective gene expression, in myopathy remains poorly defined, it has shown beneficial properties in both sarcopenia and CVD. Sulforaphane (SFN), a natural compound Nrf2-related activator of cytoprotective genes, provides protection in several disease states including CVD and is in various stages of clinical trials, from cancer prevention to reducing insulin resistance. This study aimed to determine whether SFN may prevent age-related loss of function in the heart and skeletal muscle. Cohorts of 2-month-old and 21- to 22-month-old mice were administered regular rodent diet or diet supplemented with SFN for 12 weeks. At the completion of the study, skeletal muscle and heart function, mitochondrial function, and Nrf2 activity were measured. Our studies revealed a significant drop in Nrf2 activity and mitochondrial functions, together with a loss of skeletal muscle and cardiac function in the old control mice compared to the younger age group. In the old mice, SFN restored Nrf2 activity, mitochondrial function, cardiac function, exercise capacity, glucose tolerance, and activation/differentiation of skeletal muscle satellite cells. Our results suggest that the age-associated decline in Nrf2 signaling activity and the associated mitochondrial dysfunction might be implicated in the development of age-related disease processes. Therefore, the restoration of Nrf2 activity and endogenous cytoprotective mechanisms by SFN may be a safe and effective strategy to protect against muscle and heart dysfunction due to aging.


Assuntos
Isotiocianatos/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Sulfóxidos/uso terapêutico , Animais , Isotiocianatos/farmacologia , Masculino , Camundongos , Estresse Oxidativo , Sarcopenia/patologia , Transdução de Sinais , Sulfóxidos/farmacologia
13.
Microorganisms ; 8(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003447

RESUMO

Dietary factors modulate interactions between the microbiome, metabolome, and immune system. Sulforaphane (SFN) exerts effects on aging, cancer prevention and reducing insulin resistance. This study investigated effects of SFN on the gut microbiome and metabolome in old mouse model compared with young mice. Young (6-8 weeks) and old (21-22 months) male C57BL/6J mice were provided regular rodent chow ± SFN for 2 months. We collected fecal samples before and after SFN administration and profiled the microbiome and metabolome. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the gut microbiome, and metabolome. The SFN diet restored the gut microbiome in old mice to mimic that in young mice, enriching bacteria known to be associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. The tricarboxylic acid cycle decreased and amino acid metabolism-related pathways increased. Integration of multi-omic datasets revealed SFN diet-induced metabolite biomarkers in old mice associated principally with the genera, Oscillospira, Ruminococcus, and Allobaculum. Collectively, our results support a hypothesis that SFN diet exerts anti-aging effects in part by influencing the gut microbiome and metabolome. Modulating the gut microbiome by SFN may have the potential to promote healthier aging.

14.
Front Vet Sci ; 7: 331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656252

RESUMO

Due to animal welfare issues, European Union has banned the use of conventional cages (CC) and non-EU countries including the US are also under constant public pressure to restrict their use in egg production. Very limited information is available on the composition of the microbial community of hens raised in different housing environments. This study was conducted to determine the effects of CC and enriched colony cages (EC) on cecal microbiota of two commercial laying hen strains, Hy-Line W36 (W36) and Hy-Line Brown (HB) during the late production stage (53, 58, 67, and 72 weeks of age). Cecal microbiota was studied by analyzing 16S rRNA gene sequences with Quantitative Insights Into Microbial Ecology (QIIME) 2 ver. 2018.8. Differentially abundant taxa were identified by Linear discriminant analysis Effect Size (LEfSe) analysis (P < 0.05, LDA score > 2.0). At phylum level, Actinobacteria was significantly enriched in W36 at all time points while Synergistetes (53 weeks), Spirochaetes (58 weeks), and Synergistetes and Spirochaetes (67 weeks) were significantly higher in HB. At genus level, Bifidobacterium (at all time points) and butyric acid producing genera such as Butyricicoccus and Subdoligranulum (58 and 72 weeks) were significantly higher in W36 as compared to HB. Moreover, Proteobacteria (72 weeks) and its associated genus Campylobacter (67 and 72 weeks) were significantly enriched in EC as compared to CC. Alpha diversity was significantly higher in HB (at all time points) and in EC (67 weeks) as compared to W36 and CC, respectively. Similarly, there was a significant difference in community structure (beta diversity) between W36 and HB (all time points) as well as between EC and CC (67 weeks). The effect of housing and strains was not only seen at the bacterial composition and structure but also reflected at their functional level. Notably, KEGG metabolic pathways predicted to be involved in carbohydrates degradation and amino acids biosynthesis by PICRUSt analysis were significantly different between W36 and HB housed at CC and EC. In sum, cecal microbiota composition, diversities, and their functional pathways were affected by housing type which further varied between two commercial laying hen strains, HB and W36. This suggests that both housing and genetic strains of laying hens should be considered for selection of the alternative housing systems such as enriched colony cage.

15.
Open Forum Infect Dis ; 7(6): ofaa180, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32550237

RESUMO

In this work, we report 2 cases of vancomycin-resistant Enterococcus faecium bacteremia with development of daptomycin resistance in 2 patients with acute myeloid leukemia and myelodysplastic syndrome. Mutations related to daptomycin-nonsusceptible phenotype in liaSR genes were found in all strains of the study, including those with a minimum inhibitory concentration <1 µg/mL collected before daptomycin therapy. Epidemiological investigation using core genome single nucleotide polymorphism and core genome multilocus sequence typing revealed clonality of all the isolates. In this study, we conclude that real-time genome sequencing of clinical isolates can provide rapid access to timely information on daptomycin-resistant genotypes that would help clinicians speed up and optimize the selection of the antibiotic for treatment.

16.
Microbiol Resour Announc ; 9(6)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029568

RESUMO

Here, we present complete genome sequences of four Enterococcus faecium isolates, obtained from two patients with apparent vancomycin-resistant Enterococcus faecium bacteremia; these isolates also carried two mutations known to be associated with daptomycin resistance. Sequences were obtained using de novo and hybrid assembly of Oxford Nanopore and Illumina sequence data.

17.
Microbiologyopen ; 9(2): e973, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31742930

RESUMO

The intraspecies genomic diversity of the single-strand RNA (+) virus species hepatitis A virus (Hepatovirus), hepatitis C virus (Hepacivirus), and hepatitis E virus (Orthohepevirus) was compared. These viral species all can cause liver inflammation (hepatitis), but share no gene similarity. The codon usage of human hepatitis A virus (HAV) is suboptimal for replication in its host, a characteristic it shares with taxonomically related rodent, simian, and bat hepatitis A virus species. We found this codon usage to be strikingly similar to that of Triatoma virus that infects blood-sucking kissing bugs. The codon usage of that virus is well adapted to its insect host. The codon usage of HAV is also similar to other invertebrate viruses of various taxonomic families. An evolutionary ancestor of HAV and related virus species is hypothesized to be an insect virus that underwent a host jump to infect mammals. The similarity between HAV and invertebrate viruses goes beyond codon usage, as they also share amino acid composition characteristics, while not sharing direct sequence homology. In contrast, hepatitis C virus and hepatitis E virus are highly similar in codon usage preference, nucleotide composition, and amino acid composition, and share these characteristics with Human pegivirus A, West Nile virus, and Zika virus. We present evidence that these observations are only partly explained by differences in nucleotide composition of the complete viral codon regions. We consider the combination of nucleotide composition, amino acid composition, and codon usage preference suitable to provide information on possible evolutionary similarities between distant virus species that cannot be investigated by phylogeny.


Assuntos
Evolução Molecular , Genoma Viral , Genômica , Hepacivirus/genética , Vírus da Hepatite A/genética , Vírus da Hepatite E/genética , Códon , Genômica/métodos , Hepacivirus/classificação , Vírus da Hepatite A/classificação , Vírus da Hepatite E/classificação , Humanos , Filogenia
18.
Infect Genet Evol ; 75: 103965, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31319177

RESUMO

In 2016, a year-long large-scale mumps outbreak occurred in Arkansas among a highly-vaccinated population. A total of 2954 mumps cases were identified during this outbreak. The majority of cases (1676 (57%)) were school-aged children (5-17 years), 1536 (92%) of these children had completed the mumps vaccination schedule. To weigh the possibility that the mumps virus evaded vaccine-induced immunity in the affected Arkansas population, we established a pipeline for genomic characterization of the outbreak strains. Our pipeline produces whole-genome sequences along with phylogenetic analysis of the outbreak mumps virus strains. We collected buccal swab samples of patients who tested positive for the mumps virus during the 2016 Arkansas outbreak, and used the portable Oxford Nanopore Technology to sequence the extracted strains. Our pipeline identified the genotype of the Arkansas mumps strains as genotype G and presented a genome-based phylogenetic tree with superior resolution to a standard small hydrophobic (SH) gene-based tree. We phylogenetically compared the Arkansas whole-genome sequences to all publicly available mumps strains. While these analyses show that the Arkansas mumps strains are evolutionarily distinct from the vaccine strains, we observed no correlation between vaccination history and phylogenetic grouping. Furthermore, we predicted potential B-cell epitopes encoded by the Arkansas mumps strains using a random forest prediction model trained on antibody-antigen protein structures. Over half of the predicted epitopes of the Jeryl-Lynn vaccine strains in the Hemagglutinin-Neuraminidase (HN) surface glycoprotein (a major target of neutralizing antibodies) region are missing in the Arkansas mumps strains. In-silico analyses of potential epitopes may indicate that the Arkansas mumps strains display antigens with reduced immunogenicity, which may contribute to reduced vaccine effectiveness. However, our in-silico findings should be assessed by robust experiments such as cross neutralization assays. Metadata analysis showed that vaccination history had no effect on the evolution of the Arkansas mumps strains during this outbreak. We conclude that the driving force behind the spread of the mumps virus in the 2016 Arkansas outbreak remains undetermined.


Assuntos
Surtos de Doenças , Vírus da Caxumba/genética , Caxumba/epidemiologia , Caxumba/virologia , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/imunologia , Arkansas/epidemiologia , Genoma Viral , Genótipo , Humanos , Vacina contra Caxumba , Testes de Neutralização , Filogenia
19.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975810

RESUMO

Vancomycin-resistant Enterococcus faecium (VREfm) is a major cause of nosocomial infections of the bloodstream and urinary tract. Here, we report the draft genome sequences of 48 vancomycin-resistant E. faecium isolates recovered from inpatients exhibiting clinical signs of bacteremia at the University of Arkansas for Medical Sciences (UAMS).

20.
BMC Microbiol ; 18(1): 227, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591021

RESUMO

BACKGROUND: Here we investigated the influence of different stabilization and storage strategies on the quality and composition of the fecal microbial community. Namely, same-day isolated murine DNA was compared to samples stored for 1 month in air at ambient temperature, with or without preservative buffers (i.e. EDTA and lysis buffer), different temperatures (i.e. 4 °C, - 20 °C, and - 80 °C), and hypoxic conditions. RESULTS: Only storage in lysis buffer significantly reduced DNA content, yet without integrity loss. Storage in EDTA affected alpha diversity the most, which was also reflected in cluster separation. Distinct changes were also seen in the phyla and bacterial species abundance per storage strategy. Metabolic function analysis showed 22 pathways not significantly affected by storage conditions, whereas the tyrosine metabolism pathway was significantly changed in all strategies except by EDTA. CONCLUSION: Each long-term storage strategy introduced a unique post-collection bias, which is important to take into account when interpreting data.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Preservação Biológica/métodos , Animais , Bactérias/classificação , Bactérias/genética , Fezes/microbiologia , Camundongos , Manejo de Espécimes , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...