Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.019
Filtrar
1.
J Am Chem Soc ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739877

RESUMO

Transition-metal-catalyzed C-Si/Ge cross-coupling offers promising avenues for the synthesis of organosilanes/organogermanes, yet it is fraught with long-standing challenges. A Ni/Ti-catalyzed strategy is reported here, allowing the use of disubstituted malononitriles as tertiary C(sp3) coupling partners to couple with chlorosilanes and chlorogermanes, respectively. This method enables the catalytic cleavage of the C(sp3)-CN bond of the quaternary carbon followed by the formation of C(sp3)-Si/C(sp3)-Ge bonds from ubiquitously available starting materials. The efficiency and generality are showcased by a broad scope for both of the coupling partners, therefore holding the potential to synthesize structurally diverse quaternary organosilanes and organogermanes that were difficult to access previously.

2.
Cell Rep ; 43(5): 114131, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38656870

RESUMO

Atg8 paralogs, consisting of LC3A/B/C and GBRP/GBRPL1/GATE16, function in canonical autophagy; however, their function is controversial because of functional redundancy. In innate immunity, xenophagy and non-canonical single membranous autophagy called "conjugation of Atg8s to single membranes" (CASM) eliminate bacteria in various cells. Previously, we reported that intracellular Streptococcus pneumoniae can induce unique hierarchical autophagy comprised of CASM induction, shedding, and subsequent xenophagy. However, the molecular mechanisms underlying these processes and the biological significance of transient CASM induction remain unknown. Herein, we profile the relationship between Atg8s, autophagy receptors, poly-ubiquitin, and Atg4 paralogs during pneumococcal infection to understand the driving principles of hierarchical autophagy and find that GATE16 and GBRP sequentially play a pivotal role in CASM shedding and subsequent xenophagy induction, respectively, and LC3A and GBRPL1 are involved in CASM/xenophagy induction. Moreover, we reveal ingenious bacterial tactics to gain intracellular survival niches by manipulating CASM-xenophagy progression by generating intracellular pneumococci-derived H2O2.

3.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607116

RESUMO

Compared with purely electrical neuromorphic devices, those stimulated by optical signals have gained increasing attention due to their realistic sensory simulation. In this work, an optoelectronic neuromorphic device based on a photoelectric memristor with a Bi2FeCrO6/Al-doped ZnO (BFCO/AZO) heterostructure is fabricated that can respond to both electrical and optical signals and successfully simulate a variety of synaptic behaviors, such as STP, LTP, and PPF. In addition, the photomemory mechanism was identified by analyzing the energy band structures of AZO and BFCO. A convolutional neural network (CNN) architecture for pattern classification at the Mixed National Institute of Standards and Technology (MNIST) was used and improved the recognition accuracy of the MNIST and Fashion-MNIST datasets to 95.21% and 74.19%, respectively, by implementing an improved stochastic adaptive algorithm. These results provide a feasible approach for future implementation of optoelectronic synapses.

4.
World J Gastrointest Oncol ; 16(4): 1453-1464, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660649

RESUMO

BACKGROUND: Radiotherapy stands as a promising therapeutic modality for colorectal cancer (CRC); yet, the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission. AIM: To elucidate the role played by microRNA-298 (miR-298) in CRC radio-resistance. METHODS: To establish a radio-resistant CRC cell line, HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period. The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR, and protein expression determination was realized through Western blotting. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay. Radio-induced apoptosis was discerned through flow cytometry analysis. RESULTS: We observed a marked upregulation of miR-298 in radio-resistant CRC cells. MiR-298 emerged as a key determinant of cell survival following radiation exposure, as its overexpression led to a notable reduction in radiation-induced apoptosis. Intriguingly, miR-298 expression exhibited a strong correlation with CRC cell viability. Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A (DYRK1A) as miR-298's direct target. CONCLUSION: Taken together, our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation, thereby positioning miR-298 as a promising candidate for mitigating radio-resistance in CRC.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38662912

RESUMO

The conventional von Neumann architecture has proven to be inadequate in keeping up with the rapid progress in artificial intelligence. Memristors have become the favored devices for simulating synaptic behavior and enabling neuromorphic computations to address challenges. An artificial synapse utilizing the perovskite structure PbHfO3 (PHO) has been created to tackle these concerns. By employing the sol-gel technique, a ferroelectric film composed of Au/PHO/FTO was created on FTO/glass for the purpose of this endeavor. The artificial synapse is composed of Au/PHO/FTO and exhibits learning and memory characteristics that are similar to those observed in biological neurons. The recognition accuracy for both MNIST and Fashion-MNIST data sets saw an increase, reaching 92.93% and 76.75%, respectively. This enhancement resulted from employing a convolutional neural network architecture and implementing an improved stochastic adaptive algorithm. The presented findings showcase a viable approach to achieve neuromorphic computation by employing artificial synapses fabricated with PHO.

6.
Res Sq ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38645153

RESUMO

Background: Nuclear mitotic apparatus protein 1 (NuMA1) is a cell cycle protein and upregulated in breast cancer. However, the role of NuMA1 in TNBC and its regulation in heterogenous populations remains elusive. Methods: We performed CRISPR mediated deletion of NuMA1 in mouse TNBC cells, BF3M. FACS was utilized to isolate BCSCs, and bulk cells based on CD29 and CD61 markers. Cell viability, migration, and invasion ability of BCSCs and bulk cells was evaluated using MTT, wound healing and transwell invasion assays, respectively. In vivo mouse breast cancer and lung metastatic models were generated to evaluate the combination treatment of SMI-4a and Lys-o5 inhibitors. Results: We identified that high expression of NuMA1 associated with poor survival of breast cancer patients. Further, human tissue microarray results depicted high expression of NuMA1 in TNBC relative to non-adjacent normal tissues. Therefore, we performed CRISPR mediated deletion of NuMA1 in a mouse mammary tumor cell line, BF3M and revealed that NuMA1 deletion reduced mammary tumorigenesis. We also showed that NuMA1 deletion reduced ALDH+ and CD29hiCD61+ breast cancer stem cells (BCSCs), indicating a role of NuMA1 in BCSCs. Further, sorted and characterized BCSCs from BF3M depicted reduced metastasis with NuMA1 KO cells. Moreover, we found that PIM1, an upstream kinase of NuMA1 plays a preferential role in maintenance of BCSCs associated phenotypes, but not in bulk cells. In contrast, PIM1 kinase inhibition in bulk cells depicted increased autophagy (FIP200). Therefore, we applied a combination treatment strategy of PIM1 and autophagy inhibition using SMI-4a and Lys05 respectively, showed higher efficacy against cell viability of both these populations and further reduced breast tumor formation and metastasis. Together, our study demonstrated NuMA1 as a potential therapeutic target and combination treatment using inhibitors for an upstream kinase PIM1 and autophagy inhibitors could be a potentially new therapeutic approach for TNBC. Conclusions: Our study demonstrated that combination treatment of PIM1 inhibitor and autophagy inhibitor depicted reduced mammary tumorigenesis and metastasis by targeting NuMA1 in BCSCs and bulk cells of TNBC, demonstrating this combination treatment approach could be a potentially effective therapy for TNBC patients.

7.
Cardiovasc Res ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643484

RESUMO

AIMS: The vascular aging process accelerated by type 2 diabetes mellitus (T2DM) is responsible for the elevated risk of associated cardiovascular diseases (CVDs). Metabolic disorder-induced immune senescence has been implicated in multi-organ/tissue damage. Herein, we sought to determine the role of immunosenescence in diabetic vascular aging and to investigate the underlying mechanisms. METHODS AND RESULTS: Aging hallmarks of the immune system appear prior to the vasculature in streptozotocin (STZ)/high-fat diet (HFD)-induced T2DM mice or db/db mice. Transplantation of aged splenocytes or diabetic splenocytes into young mice triggered vascular senescence and injury compared to normal control splenocyte transfer. RNA-seq profile and validation in immune tissues revealed that the Toll-like receptor 4 (TLR4)- Nuclear factor-kappa B (NF-κB) -NLRP3 axis might be the mediator of diabetic premature immunosenescence. The absence of Nlrp3 attenuated immune senescence and vascular aging during T2DM. Importantly, senescent immune cells, particularly T cells, provoked perivascular adipose tissue (PVAT) dysfunction and alternations in its secretome, which in turn impair vascular biology. In addition, senescent immune cells may uniquely affect vasoconstriction via influencing PVAT. Lastly, rapamycin alleviated diabetic immune senescence and vascular aging, which may be partly due to NLRP3 signaling inhibition. CONCLUSION: These results indicated that NLRP3 inflammasome-mediated immunosenescence precedes and drives diabetic vascular aging. The contribution of senescent immune cells to vascular aging is a combined effect of their direct effects and induction of PVAT dysfunction, the latter of which can uniquely affect vasoconstriction. We further demonstrated that infiltration of senescent T cells in PVAT was increased and associated with PVAT secretome alterations. Our findings suggest that blocking the NLRP3 pathway may prevent early immunosenescence and thus mitigate diabetic vascular aging and damage, and targeting senescent T cells or PVAT might also be the potential therapeutic approach.

9.
Phytomedicine ; 127: 155440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452691

RESUMO

BACKGROUND: The high metastasis and mortality rates of head and neck squamous cell carcinoma (HNSCC) urgently require new treatment targets and drugs. A steroidal component of ChanSu, telocinobufagin (TBG), was verified to have anti-cancer effects in various tumors, but its activity and mechanism in anti-HNSCC were still unknown. PURPOSE: This study tried to demonstrate the anti-tumor effect of TBG on HNSCC and verify its potential mechanism. METHODS: The effect of TBG on cell proliferation and metastasis were performed and the TBG changed genes were detected by RNA-seq analysis in HNSCC cells. The GSEA and PPI analysis were used to identify the pathways targeted for TBG-regulated genes. Meanwhile, the mechanism of TBG on anti-proliferative and anti-metastasis were investigated in vitro and in vivo. RESULTS: The in vitro and in vivo experiments confirmed that TBG has favorable anti-tumor effects by induced G2/M phase arrest and suppressed metastasis in HNSCC cells. Further RNA-seq analysis demonstrated the genes regulated by TBG were enriched at the G2/M checkpoint and PLK1 signaling pathway. Then, the bioinformatic analysis of clinical data found that high expressed PLK1 were closely associated with poor overall survival in HNSCC patients. Furthermore, PLK1 directly and indirectly modulated G2/M phase and metastasis (by regulated CTCF) in HNSCC cells, simultaneously. TBG significantly inhibited the protein levels of PLK1 in both phosphorylated and non-phosphorylated forms and then, in one way, inactivated PLK1 failed to activate G2/M phase-related proteins (including CDK1, CDC25c, and cyclin B1). In another way, be inhibited PLK1 unable promote the nuclear translocation of CTCF and thus suppressed HNSC cell metastasis. In contrast, the anti-proliferative and anti-metastasis effects of TBG on HNSCC cell were vanished when cells high-expressed PLK1. CONCLUSION: The present study verified that PLK1 mediated TBG induced anti-tumor effect by modulated G2/M phase and metastasis in HNSCC cells.


Assuntos
Bufanolídeos , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Linhagem Celular Tumoral
10.
BMC Med Inform Decis Mak ; 24(1): 66, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443858

RESUMO

BACKGROUND: Among people with COPD, smartphone and wearable technology may provide an effective method to improve care at home by supporting, encouraging, and sustaining self-management. The current study was conducted to determine if patients with COPD will use a dedicated smartphone and smartwatch app to help manage their COPD and to determine the effects on their self-management. METHODS: We developed a COPD self-management application for smartphones and smartwatches. Participants were provided with the app on a smartphone and a smartwatch, as well as a cellular data plan and followed for 6 months. We measured usage of the different smartphone app functions. For the primary outcome, we examined the change in self-management from baseline to the end of follow up. Secondary outcomes include changes in self-efficacy, quality of life, and COPD disease control. RESULTS: Thirty-four patients were enrolled and followed. Mean age was 69.8 years, and half of the participants were women. The most used functions were recording steps through the smartwatch, entering a daily symptom questionnaire, checking oxygen saturation, and performing breathing exercises. There was no significant difference in the primary outcome of change in self-management after use of the app or in overall total scores of health-related quality of life, disease control or self-efficacy. CONCLUSION: We found older patients with COPD would engage with a COPD smartphone and smartwatch application, but this did not result in improved self-management. More research is needed to determine if a smartphone and smartwatch application can improve self-management in people with COPD. TRIAL REGISTRATION: ClinicalTrials.Gov NCT03857061, First Posted February 27, 2019.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Autogestão , Dispositivos Eletrônicos Vestíveis , Idoso , Feminino , Humanos , Masculino , Estudos de Viabilidade , Projetos Piloto , Doença Pulmonar Obstrutiva Crônica/terapia , Qualidade de Vida
11.
Cell Rep ; 43(2): 113780, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38363674

RESUMO

Autophagy is a conserved cellular process, and its dysfunction is implicated in cancer and other diseases. Here, we employ an in vivo CRISPR screen targeting genes implicated in the regulation of autophagy to identify the Nsfl1c gene encoding p47 as a suppressor of human epidermal growth factor receptor 2 (HER2)+ breast cancer metastasis. p47 ablation specifically increases metastasis without promoting primary mammary tumor growth. Analysis of human breast cancer patient databases and tissue samples indicates a correlation of lower p47 expression levels with metastasis and decreased survival. Mechanistic studies show that p47 functions in the repair of lysosomal damage for autophagy flux and in the endosomal trafficking of nuclear factor κB essential modulator for lysosomal degradation to promote metastasis. Our results demonstrate a role and mechanisms of p47 in the regulation of breast cancer metastasis. They highlight the potential to exploit p47 as a suppressor of metastasis through multiple pathways in HER2+ breast cancer cells.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Animais , Feminino , Neoplasias da Mama/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Autofagia/genética , Bases de Dados Factuais
12.
Free Radic Biol Med ; 212: 360-374, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38171407

RESUMO

Evidence recently showed that pleiotropic cytokine interferon-gamma (IFN-γ) in the tumor microenvironment (TME) plays a positive role in hepatocellular carcinoma (HCC) progression through the regulation of liver cancer stem cells (LCSCs) in HCC. The present study explored the role and potential mechanism of mitochondrial programmed cell death-ligand 1 (PD-L1) and its regulation of ferroptosis in modulating the cancer stemness of LCSCs. It was shown that mimicking TME IFN-γ exposure increased the LCSCs ratio and cancer stemness phenotypes in HCC cells. IFN-γ exposure inhibited sorafenib (Sora)-induced ferroptosis by enhancing glutathione peroxidase 4 (GPX4) expression as well reactive oxygen species (ROS) and lipid peroxidation (LPO) generation in LCSCs. Furthermore, IFN-γ exposure upregulated PD-L1 expression and its mitochondrial translocation, inducing dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and correlating with glycolytic metabolism reprogramming in LCSCs. The genetic intervention of PD-L1 promoted ferroptosis-dependent anti-tumor effects of Sora, reduced glycolytic metabolism reprogramming, and inhibited cancer stemness of HCC in vitro and in vivo. Our results revealed a novel mechanism that IFN-γ exposure-induced mitochondrial translocation of PD-L1 enhanced glycolytic reprogramming to mediate the GPX4-dependent ferroptosis resistance and cancer stemness in LCSCs. This study provided new insights into the role of mitochondrial PD-L1-Drp1-GPX4 signal axis in regulating IFN-γ exposure-associated cancer stemness in LCSCs and verified that PD-L1-targeted intervention in combination with Sora might achieve promising synergistic anti-HCC effects.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Ferroptose/genética , Linhagem Celular Tumoral , Microambiente Tumoral
13.
Autophagy ; 20(3): 525-540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37733921

RESUMO

Most breast cancers do not respond to immune checkpoint inhibitors and there is an urgent need to identify novel sensitization strategies. Herein, we uncovered that activation of the TBK-IFN pathway that is mediated by the TBK1 adapter protein AZI2 is a potent strategy for this purpose. Our initial observations showed that RB1CC1 depletion leads to accumulation of AZI2, in puncta along with selective macroautophagy/autophagy cargo receptors, which are both required for TBK1 activation. Specifically, disrupting the selective autophagy function of RB1CC1 was sufficient to sustain AZI2 puncta accumulation and TBK1 activation. AZI2 then mediates downstream activation of DDX3X, increasing its interaction with IRF3 for transcription of pro-inflammatory chemokines. Consequently, we performed a screen to identify inhibitors that can induce the AZI2-TBK1 pathway, and this revealed Lys05 as a pharmacological agent that induced pro-inflammatory chemokine expression and CD8+ T cell infiltration into tumors. Overall, we have identified a distinct AZI2-TBK1-IFN signaling pathway that is responsive to selective autophagy blockade and can be activated to make breast cancers more immunogenic.Abbreviations: AZI2/NAP1: 5-azacytidine induced 2; CALCOCO2: calcium binding and coiled-coil domain 2; DDX3X: DEAD-box helicase 3 X-linked; FCCP: carbonyl cyanide p-triflouromethoxyphenylhydrazone; a protonophore that depolarizes the mitochondrial inner membrane; ICI: immune checkpoint inhibitor; IFN: interferon; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1.


Assuntos
Neoplasias da Mama , Macroautofagia , Humanos , Feminino , Autofagia , Linfócitos T CD8-Positivos , Linfócitos T , Proteínas Serina-Treonina Quinases
14.
Int J Biol Macromol ; 255: 128108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979769

RESUMO

Forest trees face many abiotic stressors during their lifetime, including drought, heavy metals, high salinity, and chills, affecting their quality and yield. The RING-type ubiquitin ligase E3 is an invaluable component of the ubiquitin-proteasome system (UPS) and participates in plant growth and environmental interactions. Interestingly, only a few studies have explored the RING ZINC FINGER PROTEIN (RZFP) gene family. This study identified eight PtrRZFPs genes in the Populus genome, and their molecular features were analyzed. Gene structure analysis revealed that all PtrRZFPs genes contained >10 introns. Evolutionarily, the RZFPs were separated into four categories, and segmental replication events facilitated their amplification. Notably, many stress-related elements have been identified in the promoters of PtrRZFPs using Cis-acting element analysis. Moreover, some PtrRZFPs were significantly induced by drought and sorbitol, revealing their potential roles in regulating stress responses. Particularly, overexpression of the PtrRZFP1 gene in poplars conferred excellent drought tolerance; however, PtrRZFP1 knockdown plants were drought-sensitive. We identified the potential upstream transcription factors of PtrRZFPs and revealed the possible biological functions of RZFP1/4/7 in resisting osmotic and salt stress, laying the foundation for subsequent biological function studies and providing genetic resources for genetic engineering breeding for drought resistance in forest trees. This study offers crucial information for the further exploration of the functions of RZFPs in poplars.


Assuntos
Proteínas de Plantas , Populus , Proteínas de Plantas/química , Populus/genética , Populus/metabolismo , Zinco/metabolismo , Melhoramento Vegetal , Íntrons , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas , Filogenia
15.
Organ Transplantation ; (6): 138-144, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1005244

RESUMO

With the maturity of kidney transplantation, introduction of new immunosuppressive drugs and improvement of immunosuppressive regimen, the short-term survival rate of kidney transplant recipients has been significantly improved, whereas the long-term survival rate has not been significantly elevated. Kidney transplant recipients may have the risk of renal graft loss. Clinical management after renal graft loss is complicated, including the adjustment of immunosuppressive drugs, management of renal graft and selection of subsequent renal replacement therapy. These management procedures directly affect clinical prognosis of patients with renal graft loss. Nevertheless, relevant guidelines or consensuses are still lacking. Clinical management of patients after renal graft loss highly depend upon clinicians’ experience. In this article, the adjustment of immunosuppressive drugs, management of renal graft and selection of subsequent renal replacement therapy were reviewed, aiming to provide reference for prolonging the survival and improving the quality of life of these patients.

16.
Front Bioeng Biotechnol ; 11: 1273263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026896

RESUMO

Objective: This study presents an innovative articular fossa prosthesis generated by the envelope surface of condyle movement, and compares its mandible movements, muscle activities, and joint reaction forces with two temporomandibular joint (TMJ) prostheses using multibody musculoskeletal simulation. Methods: A healthy 23-year-old female was recruited for this study. Cone-beam computed tomographic (CBCT) was performed to reconstruct the mandibular bone geometry. A customized TMJ fossa prosthesis was designed based on the subject-specific envelope surface of condyle movement (ESCM). Mandibular kinematics and jaw-closing muscle electromyography (EMG) were simultaneously recorded during maximum jaw opening-closing movements. To validate our prosthesis design, a mandibular musculoskeletal model was established using flexible multibody dynamics and the obtained kinematics and EMG data. The Biomet fossa prosthesis and the ellipsoidal fossa prosthesis designed by imitating the lower limb prostheses were used for comparison. Simulations were performed to analyze the effects of different fossa prostheses on jaw opening-closing motions, mandibular muscle activation, and contact forces. Results: The maximum opening displacement for the envelope-based fossa prosthesis was greater than those for Biomet and ellipsoidal prostheses (36 mm, 35 mm, and 33 mm, respectively). The mandibular musculoskeletal model with ellipsoidal prosthesis led to dislocation near maximal jaw opening. Compared to Biomet, the envelope-based fossa reduced the digastric and lateral pterygoid activation at maximal jaw opening. It also reduced the maximal resistance to condylar sliding on the intact side by 63.2 N. Conclusion: A customized TMJ fossa prosthesis was successfully developed using the ESCM concept. Our study of musculoskeletal multibody modeling has highlighted its advantages and potential. The artificial fossa design successfully achieved a wider condylar range of motion. It also reduced the activation of jaw opening muscles on the affected side and resistance on the intact side. This study showed that an ESCM-based approach may be useful for optimizing TMJ fossa prostheses design.

17.
Environ Monit Assess ; 195(12): 1488, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975891

RESUMO

This study aimed to investigate the distribution and migration characteristics of lead (Pb) and zinc (Zn) in paddy soils in Hunan Province, China. A total of 343 soil samples from 63 profiles were collected from typical regions. The concentration, spatial distribution, and migration behaviors of Pb and Zn in the paddy soils were examined. The results showed that (1) the concentration ranges of Pb and Zn in the surface layer were 17.62-114.07 mg/kg and 44.98-146.84 mg/kg, respectively. (2) The content was higher in the middle and lower reaches of the Xiangjiang River basin horizontally and exhibited shallow enrichment characteristics vertically. (3) Pb migration was weaker than Zn migration, and the parent material had the most significant influence on Pb and Zn content in the bottom soil layer. The research results will clarify the characteristics of Pb and Zn contents in paddy soils in Hunan Province, further understand the horizontal distribution and vertical migration and transformation characteristics of Pb and Zn contents in paddy soils, and provide basic data for scientific rice cultivation and safe food production.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Zinco/análise , Solo , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental , China , Metais Pesados/análise
18.
BMC Med ; 21(1): 464, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012705

RESUMO

BACKGROUND: Post-radiation nasopharyngeal necrosis (PRNN) is a severe adverse event following re-radiotherapy for patients with locally recurrent nasopharyngeal carcinoma (LRNPC) and associated with decreased survival. Biological heterogeneity in recurrent tumors contributes to the different risks of PRNN. Radiomics can be used to mine high-throughput non-invasive image features to predict clinical outcomes and capture underlying biological functions. We aimed to develop a radiogenomic signature for the pre-treatment prediction of PRNN to guide re-radiotherapy in patients with LRNPC. METHODS: This multicenter study included 761 re-irradiated patients with LRNPC at four centers in NPC endemic area and divided them into training, internal validation, and external validation cohorts. We built a machine learning (random forest) radiomic signature based on the pre-treatment multiparametric magnetic resonance images for predicting PRNN following re-radiotherapy. We comprehensively assessed the performance of the radiomic signature. Transcriptomic sequencing and gene set enrichment analyses were conducted to identify the associated biological processes. RESULTS: The radiomic signature showed discrimination of 1-year PRNN in the training, internal validation, and external validation cohorts (area under the curve (AUC) 0.713-0.756). Stratified by a cutoff score of 0.735, patients with high-risk signature had higher incidences of PRNN than patients with low-risk signature (1-year PRNN rates 42.2-62.5% vs. 16.3-18.8%, P < 0.001). The signature significantly outperformed the clinical model (P < 0.05) and was generalizable across different centers, imaging parameters, and patient subgroups. The radiomic signature had prognostic value concerning its correlation with PRNN-related deaths (hazard ratio (HR) 3.07-6.75, P < 0.001) and all causes of deaths (HR 1.53-2.30, P < 0.01). Radiogenomics analyses revealed associations between the radiomic signature and signaling pathways involved in tissue fibrosis and vascularity. CONCLUSIONS: We present a radiomic signature for the individualized risk assessment of PRNN following re-radiotherapy, which may serve as a noninvasive radio-biomarker of radiation injury-associated processes and a useful clinical tool to personalize treatment recommendations for patients with LANPC.


Assuntos
Neoplasias Nasofaríngeas , Recidiva Local de Neoplasia , Humanos , Carcinoma Nasofaríngeo/genética , Estudos Retrospectivos , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/genética , Prognóstico , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Imageamento por Ressonância Magnética/métodos
19.
Cell Rep ; 42(12): 113472, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999975

RESUMO

Mitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs. By combining mtGLP with structured illumination microscopy to monitor mitochondrial dynamics, we discover the formation of nucleoid condensates in damaged mitochondria. We further reveal that nucleoid condensates promoted the peripheral fission of damaged mitochondria via asymmetric segregation. Through simulations, we find that the peripheral fission events occurred when the nucleoid condensates interacted with the highly curved membrane regions at the two ends of the mitochondria. Overall, we show that mitochondrial nucleoid condensates utilize peripheral fission to maintain mitochondrial homeostasis.


Assuntos
DNA Mitocondrial , Mitocôndrias , Mitocôndrias/genética , DNA Mitocondrial/genética , Membranas Mitocondriais , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais
20.
Sci Rep ; 13(1): 17911, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863886

RESUMO

Pyroptosis is a type of programmed cell death and plays a dual role in distinct cancers. It is elusive to evaluate the activation level of pyroptosis and to appraise the involvement of pyroptosis in the occurrence and development of diverse tumors. Accordingly, we herein established an indicator to evaluate pyroptosis related gene transcription levels based on the expression level of genes involved in pyroptosis and tried to elaborated on the association between pyroptosis and tumors across diverse tumor types. We found that pyroptosis related gene transcription levels could predict the prognosis of patients, which could act as either a favorable or a dreadful factor in diverse cancers. According to signaling pathway analyses we observed that pyroptosis played a significant role in immune regulation and tumorigenesis and had strong links with other forms of cell death. We also performed analysis on the crosstalk between pyroptosis and immune status and further investigated the predictive potential of pyroptosis level for the efficacy of immunotherapy. Lastly, we manifested that pyroptosis status could serve as a biomarker to the efficacy of chemotherapy across various cancers. In summary, this study established a quantitative indicator to evaluate pyroptosis related gene transcription levels, systematically explored the role of pyroptosis in pan-cancer. These results could provide potential research directions targeting pyroptosis, and highlighted that pyroptosis may be used to develop a novel strategy for the treatment of cancer.


Assuntos
Neoplasias , Piroptose , Humanos , Piroptose/genética , Neoplasias/genética , Carcinogênese , Morte Celular , Transcrição Gênica , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...