Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122735, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080055

RESUMO

2,4,6-trinitrophenyl phenol (TNP) and dichromate (Cr2O72-) have serious toxicological effects on environment. Therefore, it is very important to detect and remove TNP and Cr2O72- in environmental matrix. In this work, a dual-functional UiO type metal-organic framework (Zr-Sti) was synthesized for simultaneous detection and removal of those pollutants in aqueous solution. As for detection, Zr-Sti exhibited sensitive and selective fluorescence response to TNP and Cr2O72- with detection limit below µM level, and possible mechanism behind was proposed and partially supported by experiment data. In addition, adsorption capacity of the prepared Zr-Sti for TNP and Cr2O72- was further investigated to evaluate its performance in pollutant removal from aqueous solution, and the mechanism behinds the obtained high removal efficiency was proposed. These results together with the satisfied recovery for simultaneous detection of TNP and Cr2O72- in real sample, indicate the potential of the prepared Zr-Sti material in the field of environment monitoring and remediation.

2.
Waste Manag ; 157: 339-347, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603448

RESUMO

Spent coffee grounds (SCGs) are waste residues arising from the process of coffee brewing and are usually sent to landfills, causing environmental concerns. SCGs contain a considerable amount of fatty acids and is therefore a promising green alternative bio-based phase change material (PCMs) compared to conventional organic and inorganic PCMs. In this study, the extraction of coffee oil from SCGs was conducted using three different organic solvents-ethanol, acetone, and hexane. The chemical composition, chemical, and thermophysical properties of these coffee oil extracts were studied to evaluate their feasibility as a bio-based PCM. Gas chromatography-mass spectroscopy (GC-MS) analysis indicated that coffee oil contains about 60-80 % of fatty acids while the phase transition temperature of the coffee oil extracts is approximately 4.5 ± 0.72 °C, with latent heat values of 51.15 ± 1.46 J/g as determined by differential scanning calorimetry (DSC). Fourier Transform Infrared Spectroscopy (FTIR) and DSC results of coffee oil extracts after thermal cycling revealed good thermal and chemical stability. An application study to evaluate coffee oil extract as a potential cold therapy modality showed that it can maintain temperatures below normal body temperature for up to 46 min. In conclusion, this work exemplifies the potential of SCGs as a promising green and sustainable resource for bio-based PCMs for low-temperature thermal energy storage applications such as cold-chain transportation and cold therapy.


Assuntos
Café , Temperatura Alta , Café/química , Solventes , Ácidos Graxos , Extratos Vegetais
3.
Adv Drug Deliv Rev ; 192: 114644, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493906

RESUMO

Phototheranostic based on photothermal therapy (PTT) and photoacoustic imaging (PAI), as one of avant-garde medical techniques, have sparked growing attention because it allows noninvasive, deeply penetrative, and highly selective and effective therapy. Among a variety of phototheranostic nanoagents, single-component inorganic nanostructures are found to be novel and attractive PAI and PTT combined nanotheranostic agents and received tremendous attention, which not only exhibit structural controllability, high tunability in physiochemical properties, size-dependent optical properties, high reproducibility, simple composition, easy functionalization, and simple synthesis process, but also can be endowed with multiple therapeutic and imaging functions, realizing the superior therapy result along with bringing less foreign materials into body, reducing systemic side effects and improving the bioavailability. In this review, according to their synthetic components, conventional single-component inorganic nanostructures are divided into metallic nanostructures, metal dichalcogenides, metal oxides, carbon based nanostructures, upconversion nanoparticles (UCNPs), metal organic frameworks (MOFs), MXenes, graphdiyne and other nanostructures. On the basis of this category, their detailed applications in PAI guide PTT of tumor treatment are systematically reviewed, including synthesis strategies, corresponding performances, and cancer diagnosis and therapeutic efficacy. Before these, the factors to influence on photothermal effect and the principle of in vivo PAI are briefly presented. Finally, we also comprehensively and thoroughly discussed the limitation, potential barriers, future perspectives for research and clinical translation of this single-component inorganic nanoagent in biomedical therapeutics.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Técnicas Fotoacústicas , Humanos , Terapia Fototérmica , Fototerapia/métodos , Técnicas Fotoacústicas/métodos , Reprodutibilidade dos Testes , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
4.
ChemSusChem ; 14(16): 3237-3243, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34232551

RESUMO

Gel polymer electrolytes are an important advancement in energy storage technology due to their enhanced safety and practical ionic conductivities at ambient temperatures. Herein, a simple one-step facile synthesis of chemically crosslinked polyurethanes containing polyethylene oxide (PEO) and polypropylene oxide (PPO) macromolecular segments was developed, using ubiquitous non-toxic tetrabutylammonium or potassium chloride and bromide salts as catalysts. These salts were shown to catalyze the gelation of diol-diisocyanate polyaddition reactions within minutes. When impregnated with a liquid electrolyte, the resulting gel electrolyte exhibited a practical ionic conductivity of 1.1×10-4  S cm-1 at 40 °C and low segmental chain motion activation energy (11 kJ mol-1 ). These findings further promote PEO-PPO polyurethanes as a biocompatible class of materials suitable for further exploration as gel polymer electrolytes for supercapacitors.

5.
Indoor Air ; 31(5): 1639-1644, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33876847

RESUMO

Facing shortages of personal protective equipment, some clinicians have advocated the use of barrier enclosures (typically mounted over the head, with and without suction) to contain aerosol emissions from coronavirus disease 2019 (COVID-19) patients. There is, however, little evidence for its usefulness. To test the effectiveness of such a device, we built a manikin that can expire micron-sized aerosols at flow rates close to physiological conditions. We then placed the manikin inside the enclosure and used a laser sheet to visualize the aerosol leaking out. We show that with sufficient suction, it is possible to effectively contain aerosol from the manikin, reducing aerosol exposure outside the enclosure by 99%. In contrast, a passive barrier without suction only reduces aerosol exposure by 60%.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Infecções/métodos , Humanos , Modelos Anatômicos , SARS-CoV-2 , Sucção/métodos
6.
Biomater Sci ; 3(12): 1505-18, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26415703

RESUMO

The adhesion and proliferation of bacteria on various artificial surfaces affects the functionality of these specific interfaces. To overcome the problems caused by bacterial growth on these surfaces, various antibacterial coatings were developed. In this review, we summarized most of the antibacterial surfaces prepared by the Layer-by-Layer (LbL) assembly approach and classified these LbL films based on their antibacterial mechanisms. In the first group, the bactericidal LbL assemblies which incorporate various biocides including heavy metals, antibiotics, cationic molecules, antimicrobial peptides and enzymes are able to kill surrounding or contacted bacteria. In the second group, we focused on the physical aspects of film surfaces. Bacterial adhesion resistant LbL films have been fabricated to adjust the substrate surface properties such as surface free energy (or wettability), roughness, and surface charge which may affect the adhesion of bacteria. Furthermore, as an enhancement in the antibacterial efficiency, multifunctional LbL assemblies combining both bactericidal and adhesion resistant functionalities were discussed. The advantages and limitations of these antibacterial LbL assemblies were summarized and subsequently directions for future development were proposed.


Assuntos
Antibacterianos/química , Aderência Bacteriana/fisiologia , Nanopartículas Metálicas/química , Polímeros/química , Prata/química , Antibacterianos/síntese química , Cátions/química , Concentração de Íons de Hidrogênio , Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...