Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JHEP Rep ; 5(10): 100816, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37663117

RESUMO

Background & Aims: Lymphatic vessels (LVs) are crucial for maintaining abdominal fluid homoeostasis and immunity. In cirrhosis, mesenteric LVs (mLVs) are dilated and dysfunctional. Given the established role of vascular endothelial growth factor-C (VEGF-C) in improving LVs, we hypothesised that VEGF-C treatment could ameliorate the functions of mLVs in cirrhosis. Methods: In this study, we developed a nanoformulation comprising LV-specific growth factor, recombinant human VEGF-C (Cys156Ser) protein (E-VEGF-C) and delivered it orally in different models of rat cirrhosis to target mLVs. Cirrhotic rats were given nanoformulation without VEGF-C served as vehicles. Drainage of mLVs was analysed using tracer dye. Portal and systemic physiological assessments and computed tomography were performed to measure portal pressures and ascites. Gene expression and permeability of primary mesenteric lymphatic endothelial cells (LyECs) was studied. Immune cells in mesenteric lymph nodes (MLNs) were quantified by flow cytometry. Endogenous and exogenous gut bacterial translocation to MLNs was examined. Results: In cirrhotic rats, mLVs were dilated and leaky with impaired drainage. Treatment with E-VEGF-C induced proliferation of mLVs, reduced their diameter, and improved functional drainage. Ascites and portal pressures were significantly reduced in E-VEGF-C rats compared with vehicle rats. In MLNs of E-VEGF-C animals, CD8+CD134+ T cells were increased, whereas CD25+ regulatory T cells were decreased. Both endogenous and exogenous bacterial translocation were limited to MLNs in E-VEGF-C rats with reduced levels of endotoxins in ascites and blood in comparison with those in vehicle rats. E-VEGF-C treatment upregulated the expression of vascular endothelial-cadherin in LyECs and functionally improved the permeability of these cells. Conclusions: E-VEGF-C treatment ameliorates mesenteric lymph drainage and portal pressure and strengthens cytotoxic T-cell immunity in MLNs in experimental cirrhosis. It may thus serve as a promising therapy to manage ascites and reduce pathogenic gut bacterial translocation in cirrhosis. Impact and Implications: A human recombinant pro-lymphangiogenic growth factor, VEGF-C, was encapsulated in nanolipocarriers (E-VEGF-C) and orally delivered in different models of rat liver cirrhosis to facilitate its gut lymphatic vessel uptake. E-VEGF-C administration significantly increased mesenteric lymphatic vessel proliferation and improved lymph drainage, attenuating abdominal ascites and portal pressures in the animal models. E-VEGF-C treatment limited bacterial translocation to MLNs only with reduced gut bacterial load and ascitic endotoxins. E-VEGF-C therapy thus holds the potential to manage ascites and portal pressure and reduce gut bacterial translocation in patients with cirrhosis.

2.
Front Physiol ; 14: 1045983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304826

RESUMO

Dilated and dysfunctional gut lymphatic vessels (LVs) have been reported in experimental cirrhosis. Here, we studied LVs in duodenal (D2)-biopsies of liver cirrhosis patients and investigated the prognostic role of a LV marker, podoplanin (PDPN), in predicting the mortality of patients with cirrhosis. A prospective, single-center cohort study was performed in liver cirrhosis patients (n = 31) and matched healthy controls (n = 9). D2-biopsies were obtained during endoscopy procedure, immunostained with PDPN, and scored based on 1) intensity and 2) density of positively-stained LVs per high power field. Gut and systemic inflammation were estimated by quantifying duodenal CD3+ intraepithelial lymphocytes (IELs), CD68+ macrophages, and serum TNF-α and IL-6 levels, respectively. Gut permeability and inflammation as assessed by quantifying gene expression of TJP1, OCLN, TNF-α, and IL-6 in D2-biopsies. Gene expression of LV markers, PDPN (8-fold), and LYVE1 (3-fold) was enhanced in D2-biopsies of cirrhosis patients compared to control (p < 0.0001). The mean PDPN score in decompensated cirrhosis patients (6.91 ± 1.26, p < 0.0001) was significantly increased as compared to those with compensated (3.25 ± 1.60). PDPN score positively and significantly correlated with the number of IELs (r = 0.33), serum TNF-α (r = 0.35), and IL-6 (r = 0.48) levels, while inversely correlated with TJP1 expression (r = -0.46, p < 0.05 each). In Cox regression, the PDPN score was a significant and independent 3-month-mortality predictor in patients (HR: 5.61; 1.08-29.109; p = 0.04). The area under the curve for the PDPN score was 84.2, and cutoff value for predicting mortality was ≥6.5 with 100% sensitivity and 75% specificity. Collectively, dilated LVs with high PDPN expression in D2-biopsies is a characteristic feature of patients with decompensated cirrhosis. PDPN score correlates with enhanced gut and systemic inflammation and also associates with 3-month mortality in cirrhosis.

3.
ACS Omega ; 7(41): 36811-36824, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278038

RESUMO

Liver cirrhosis is a major health problem with multiple associated complications. The presently available drug delivery systems showed moderate site-specific delivery of antifibrotic molecules to the diseased liver; therefore, research on more effective and selective delivery systems in the context of liver cirrhosis remains a necessity in clinical investigation. The aim of the present study was to develop a peptide-based targeted nanocarrier to deliver an oligonucleotide to the hepatic sinusoidal and perivascular regions of the cirrhotic liver. We have synthesized and characterized a conformationally restricted targeted pentapeptide (RΔFRGD), which contains an unnatural amino acid, α,ß-dehydrophenylalanine (ΔF). The RΔFRGD self-assembled into spherical nanoparticles (NPs) and was characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Next, we investigated the delivery potential of the pentapeptide-based NPs to make a stable complex with a well-established small interference RNA and studied its site-specific delivery in experimental liver cirrhosis. We used siNR4A1 of the orphan nuclear receptor 4A1 (NR4A1), a well-known regulatory checkpoint for controlling liver fibrosis. Peptide NPs and their complex with siNR4A1 showed high biocompatibility against various mammalian cell lines. Hepatic tissue biodistribution analysis illustrated that targeted NPs predominantly accumulated in the cirrhotic liver compared to normal rats, specifically in sinusoidal and perivascular areas. A significant downregulation of the NR4A1 mRNA expression (-70%) andlower levels of the NR4A1/GAPDH ratio (-55%) were observed in the RΔFRGD-siNR4A1 nanocomplex-treated group in comparison to the RΔFRGD-vehicle group (RΔFRGD-Veh) at the gene and protein levels, respectively. In addition, in vivo inhibition of NR4A1 produced a significant aggravation in hepatic fibrosis compared with siRNA-vehicle-treated rats (+41% in the MT stain). The novel pentapeptide-based targeted delivery system can be further evaluated and validated for therapeutic purposes in various pathological conditions.

4.
Am J Physiol Gastrointest Liver Physiol ; 322(5): G473-G479, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35195034

RESUMO

The lymphatic vascular system runs parallel to the blood vascular system, comprising a network of lymphatic vessels and secondary lymphoid organs. The intestinal lymphatic capillaries (lacteals) and the associated collecting vessels in the mesentery form the gut lymphatic system. The gut lymphatic vasculature comprises the longest-studied lymphatic vessel bed and plays a significant role in the uptake and transport of dietary fat, abdominal fluid balance, and gut immunosurveillance. Gut is closely connected to liver through the portal circulation. In several experimental and clinical studies, the "gut-liver-axis" has been demonstrated to contribute to the pathogenesis of portal hypertension, liver cirrhosis, and its complications. Given a significant impact of gut health on the liver, in the current review, we highlight "gut-liver axis" in context to the circulatory physiology of gut lymphatic vessels. Despite their paramount importance in maintaining fluid and immune homeostasis in the gut, gut lymphatic vessels remain one of the most understudied physiological systems in liver disease pathology. In the current review, we delineate the connections of gut lymphatics with abdominal fluid homeostasis and bacterial translocation in the pathogenesis of liver cirrhosis and portal hypertension. We describe mechanisms and factors that drive gut lymphangiogenesis and lymphatic vessel dysfunction during inflammation. The review also underscores the role of gut lymphatic endothelial cells in regulating gut and liver immunity. We finally discuss the prognostic and therapeutic prospects of studying gut lymphatic vessels in advanced liver cirrhosis.


Assuntos
Hipertensão Portal , Vasos Linfáticos , Células Endoteliais/patologia , Humanos , Hipertensão Portal/etiologia , Cirrose Hepática/patologia , Linfangiogênese , Sistema Linfático , Vasos Linfáticos/patologia
5.
Molecules ; 26(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500749

RESUMO

Imidazo[1,2-b]pyridazine compounds are a new class of promising lead molecules to which we have incorporated polar nitro and amino moieties to increase the scope of their biological activity. Two of these substituted 3-nitro-6-amino-imidazo[1,2-b]pyridazine compounds (5c and 5h) showed potent acetylcholinesterase (AChE) inhibitory activity (IC50 40-50 nM), which we have previously reported. In this study, we wanted to test the biological efficacy of these compounds. Cytotoxicity assays showed that compound 5h mediated greater cell death with over 43% of cells dead at 100 µM and activation of caspase 3-mediated apoptosis. On the other hand, compound 5c mediated a dose-dependent decrease in cell proliferation. Both compounds showed cell cycle arrest in the G0/G1 phase and reduced cellular ATP levels leading to activation of adenosine monophosphate-activated protein kinase (AMPK) and enhanced mitochondrial oxidative stress. It has to be noted that all these effects were observed at doses beyond 10 µM, 200-fold above the IC50 for AChE inhibition. Both compounds also inhibited bacterial lipopolysaccharide-mediated cyclooxygenase-2 and nitric oxide release in primary rat microglial cells. These results suggested that the substituted imidazo (1,2-b) pyridazine compounds, which have potent AChE inhibitory activity, were also capable of antiproliferative, anti-migratory, and anti-inflammatory effects at higher doses.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Colinesterase/farmacologia , Neuroblastoma/tratamento farmacológico , Piridazinas/farmacologia , Acetilcolinesterase/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Estresse Oxidativo/efeitos dos fármacos , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445195

RESUMO

BACKGROUND: Runt-related transcription factor (RUNX1) regulates inflammation in non-alcoholic steatohepatitis (NASH). METHODS: We performed in vivo targeted silencing of the RUNX1 gene in liver sinusoidal endothelial cells (LSECs) by using vegfr3 antibody tagged immunonano-lipocarriers encapsulated RUNX1 siRNA (RUNX1 siRNA) in murine models of methionine choline deficient (MCD) diet-induced NASH. MCD mice given nanolipocarriers-encapsulated negative siRNA were vehicle, and mice with standard diet were controls. RESULTS: Liver RUNX1 expression was increased in the LSECs of MCD mice in comparison to controls. RUNX1 protein expression was decreased by 40% in CD31-positive LSECs of RUNX1 siRNA mice in comparison to vehicle, resulting in the downregulation of adhesion molecules, ICAM1 expression, and VCAM1 expression in LSECs. There was a marked decrease in infiltrated T cells and myeloid cells along with reduced inflammatory cytokines in the liver of RUNX1 siRNA mice as compared to that observed in the vehicle. CONCLUSIONS: In vivo LSEC-specific silencing of RUNX1 using immunonano-lipocarriers encapsulated siRNA effectively reduces its expression of adhesion molecules, infiltrate on of immune cells in liver, and inflammation in NASH.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Inflamação/genética , Hepatopatia Gordurosa não Alcoólica/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Inflamação/terapia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/terapia , RNA Interferente Pequeno/uso terapêutico , Terapêutica com RNAi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...