Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(21): eadg3683, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224246

RESUMO

The rise of antimicrobial resistance poses a substantial threat to our health system, and, hence, development of drugs against novel targets is urgently needed. The natural peptide thanatin kills Gram-negative bacteria by targeting proteins of the lipopolysaccharide transport (Lpt) machinery. Using the thanatin scaffold together with phenotypic medicinal chemistry, structural data, and a target-focused approach, we developed antimicrobial peptides with drug-like properties. They exhibit potent activity against Enterobacteriaceae both in vitro and in vivo while eliciting low frequencies of resistance. We show that the peptides bind LptA of both wild-type and thanatin-resistant Escherichia coli and Klebsiella pneumoniae strains with low-nanomolar affinities. Mode of action studies revealed that the antimicrobial activity involves the specific disruption of the Lpt periplasmic protein bridge.


Assuntos
Proteínas de Escherichia coli , Peptidomiméticos , Enterobacteriaceae , Lipopolissacarídeos , Peptidomiméticos/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Proteínas de Transporte
2.
Shock ; 56(1): 119-124, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181622

RESUMO

BACKGROUND: Trauma induces neutrophil migration toward injury sites, both initiating wound healing and protecting against local bacterial infection. We have previously shown that mitochondrial formyl peptides (mtFPs) released by injured tissues act as chemoattractants by ligating neutrophil (PMN) formyl peptide receptor 1 (FPR1). But this process can also internalize multiple neutrophil chemoattractant receptors and thus might limit neutrophil migration to the lung in response to bacteria. Our objective was to better understand susceptibility to pneumonia after injury and thus find ways to reverse it. METHODS AND RESULTS: We modeled the alveolar chemotactic environment in pulmonary infections by incubating Staphylococcus aureus or Escherichia coli with peripheral blood mononuclear cells. Survey of the chemotactic mediators in the resultant conditioned media (CM) showed multiple potent chemoattractants. Pretreating PMN with mtFPs to mimic injury potently reduced net migration toward CM and this net effect was mostly reversed by an FPR1 antagonist. Using an established mouse model of injury-dependent lung infection, we then showed simple instillation of exogenous unstimulated human neutrophils into the airway resulted in bacterial clearance from the lung. CONCLUSION: Injury-derived mtFPs suppress global PMN localization into complex chemotactic environments like infected alveoli. Transplantation of naive exogenous human neutrophils into the airway circumvents that pathologic process and prevents development of post-traumatic pneumonia without injury noted to the recipients.


Assuntos
Quimiotaxia de Leucócito , Neutrófilos/fisiologia , Pneumonia Bacteriana/etiologia , Pneumonia Bacteriana/terapia , Ferimentos e Lesões/complicações , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Crit Care Med ; 48(2): e123-e132, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31939811

RESUMO

OBJECTIVES: Trauma predisposes to systemic sterile inflammation (systemic inflammatory response syndrome) as well as infection, but the mechanisms linking injury to infection are poorly understood. Mitochondrial debris contains formyl peptides. These bind formyl peptide receptor-1, trafficking neutrophils to wounds, initiating systemic inflammatory response syndrome, and wound healing. Bacterial formyl peptides, however, also attract neutrophils via formyl peptide receptor-1. Thus, mitochondrial formyl peptides might suppress neutrophils antimicrobial function. Also, formyl peptide receptor-1 blockade used to mitigate systemic inflammatory response syndrome might predispose to sepsis. We examined how mitochondrial formyl peptides impact neutrophils functions contributing to antimicrobial responses and how formyl peptide receptor-1 antagonists affect those functions. DESIGN: Prospective study of human and murine neutrophils and clinical cohort analysis. SETTING: University research laboratory and level 1 trauma center. PATIENTS: Trauma patients, volunteer controls. ANIMAL SUBJECTS: C57Bl/6, formyl peptide receptor-1, and formyl peptide receptor-2 knockout mice. INTERVENTIONS: Human and murine neutrophils functions were activated with autologous mitochondrial debris, mitochondrial formyl peptides, or bacterial formyl peptides followed by chemokines or leukotrienes. The experiments were repeated using formyl peptide receptor-1 antagonist cyclosporin H, "designer" human formyl peptide receptor-1 antagonists (POL7178 and POL7200), or anti-formyl peptide receptor-1 antibodies. Mouse injury/lung infection model was used to evaluate effect of formyl peptide receptor-1 inhibition. MEASUREMENTS AND MAIN RESULTS: Human neutrophils cytosolic calcium, chemotaxis, reactive oxygen species production, and phagocytosis were studied before and after exposure to mitochondrial debris, mitochondrial formyl peptides, and bacterial formyl peptides. Mitochondrial formyl peptide and bacterial formyl peptides had similar effects on neutrophils. Responses to chemokines and leukotrienes were suppressed by prior exposure to formyl peptides. POL7200 and POL7178 were specific antagonists of human formyl peptide receptor-1 and more effective than cyclosporin H or anti-formyl peptide receptor-1 antibodies. Formyl peptides inhibited mouse neutrophils responses to chemokines only if formyl peptide receptor-1 was present. Formyl peptide receptor-1 blockade did not inhibit neutrophils bacterial phagocytosis or reactive oxygen species production. Cyclosporin H increased bacterial clearance in lungs after injury. CONCLUSIONS: Formyl peptides both activate and desensitize neutrophils. Formyl peptide receptor-1 blockade prevents desensitization, potentially both diminishing systemic inflammatory response syndrome and protecting the host against secondary infection after tissue trauma or primary infection.


Assuntos
Proteínas Mitocondriais/imunologia , Ativação de Neutrófilo/imunologia , Receptores de Formil Peptídeo/antagonistas & inibidores , Animais , Ciclosporina/farmacologia , Humanos , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções Respiratórias/fisiopatologia
4.
Immun Inflamm Dis ; 5(2): 98-108, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28474501

RESUMO

INTRODUCTION: Asthma is major health burden throughout the world, and there are no therapies that have been shown to be able to prevent the development of disease. A severe respiratory paramyxoviral infection early in life has been demonstrated to greatly increase the risk of developing asthma. We have a mouse model of a severe respiratory paramyxoviral infection (Sendai virus, SeV) that mimics human disease, and requires early expression of the cytokine CCL28 to drive the development of post-viral airway disease. The known receptors for CCL28 are CCR3 and CCR10. However, it is not known if blockade of these receptors will prevent the development of post-viral airway disease. The objective of this study was to determine if treatment with a protein epitope mimetic antagonist of CCR10, POL7085, will provide sufficient protection against the development of post-viral airway disease. METHODS: C57BL6 mice were inoculated with SeV or UV inactivated SeV. From day 3-19 post inoculation (PI), mice were subcutaneously administered daily POL7085 or saline, or every other day anti-CCL28 mAb. On days 8, 10, and 12 PI bronchoalveolar cytokines, serum IgE, and lung cellular constituents were measured. At day 21 PI airway hyper-reactivity to methacholine and mucous cell metaplasia was measured. RESULTS: Treatment with either anti-CCL28 or POL7085 significantly reduced development of airway hyper-reactivity and mucous cell metaplasia following SeV infection. The prevention of post-viral airway disease was associated with early reductions in innate immune cells, but did not appear to be due to a reduction in IL-13 or IgE. CONCLUSIONS: Blockade of CCL28 or CCR10 during an acute severe respiratory paramyxoviral infection is sufficient to prevent the development of post-viral airway disease. However, the mechanism of action is unclear and requires further exploration.


Assuntos
Asma/tratamento farmacológico , Quimiocinas CC/antagonistas & inibidores , Receptores CCR10/antagonistas & inibidores , Infecções por Respirovirus/tratamento farmacológico , Vírus Sendai/imunologia , Animais , Asma/etiologia , Asma/imunologia , Asma/virologia , Quimiocinas CC/imunologia , Humanos , Camundongos , Receptores CCR10/imunologia , Infecções por Respirovirus/complicações , Infecções por Respirovirus/imunologia
5.
Respir Res ; 16: 77, 2015 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-26112287

RESUMO

BACKGROUND: Potential involvement of the CCR10/CCL28 axis was recently reported in murine models of allergic asthma. If confirmed, blockade of the CCR10 receptor would represent an alternative to current asthma therapies. We evaluated the effect of a novel Protein Epitope Mimetic CCR10 antagonist, POL7085, in a murine model of allergic eosinophilic airway inflammation. METHODS: Mice were sensitized and challenged to ovalbumin. POL7085, a CCR10 antagonist (7.5 and 15 mg/kg), dexamethasone (1 mg/kg) or vehicle were administered intranasally once daily 1h before each allergen challenge. On day 21, airway hyperresponsiveness, bronchoalveolar lavage inflammatory cells and Th2 cytokines, and lung tissue mucus and collagen were measured. RESULTS: Allergen challenge induced airway hyperresponsiveness in vehicle-treated animals as measured by whole body barometric plethysmography, and eosinophilia in bronchoalveolar lavage. POL7085 dose-dependently and significantly decreased airway hyperresponsiveness (34 ± 16 %) and eosinophil numbers in bronchoalveolar lavage (66 ± 6 %). In addition, the highest dose of POL7085 used significantly inhibited lung IL-4 (85 ± 4 %), IL-5 (87 ± 2 %) and IL-13 (190 ± 19 %) levels, and lung collagen (43 ± 11 %). CONCLUSIONS: The Protein Epitope Mimetic CCR10 antagonist, POL7085, significantly and dose-dependently decreased allergen-induced airway hyperresponsiveness and airway inflammation after once daily local treatment. Our data give strong support for further investigations with CCR10 antagonists in asthmatic disease.


Assuntos
Asma/prevenção & controle , Hiper-Reatividade Brônquica/prevenção & controle , Epitopos/uso terapêutico , Eosinofilia Pulmonar/prevenção & controle , Receptores CCR10/antagonistas & inibidores , Animais , Asma/patologia , Hiper-Reatividade Brônquica/patologia , Relação Dose-Resposta a Droga , Epitopos/química , Epitopos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Eosinofilia Pulmonar/patologia , Receptores CCR10/química
6.
Org Lett ; 5(4): 383-5, 2003 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-12583724

RESUMO

[reaction: see text] The nucleoside dimer linked by a butadiynediyl group at C-3'beta may serve as a building block for the preparation of backbone-modified oligonucleotides for DNA repair or mutation in functional genomics. We prepared this type of dimer by an Eglington or Sonogashira coupling reaction. The unsymmetrical dimer was synthesized by coupling the acetylene with the bromoacetylene. Only marginal cytotoxicity was detected for one of the dimers.


Assuntos
Acetileno/química , Nucleosídeos/síntese química , Ribose/química , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...