Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612362

RESUMO

Positive reinforcement and training for health optimization are pivotal for successful studies with monkeys. Potential food inclination is important for studies on crab-eating macaques in laboratory environments, but evaluations remain scarce. We explored crab-eating macaques' potential food inclination to establish a reward system for future behavioral assessments. Twelve male and three female monkeys underwent a food inclination assessment in which they were offered four food categories-fruits, vegetables, proteins, and nuts. The monkeys exhibited a higher inclination for plant-based foods, particularly fruits and vegetables, over animal-based proteins like chicken and tuna (p < 0.0001), with a notable inclination for nuts (eaten/provided = 100%). Additionally, the consistency of potential food inclination after repeated offerings was investigated, revealing a time-dependent increase in inclination for protein items. Food consumption ratios correlated positively with caloric intake (r = 0.59, p = 0.02), implying that individuals with a regular high caloric intake and increased body weight are more likely to accept food during positive reinforcement training. Our findings suggest fruits, vegetables, protein-rich foods, and nuts can help with health optimization. However, animal-based protein-rich foods initially had a low preference, which may increase over time. Our study can provide guidelines for positive reinforcement training and health optimization.

2.
Bioengineering (Basel) ; 10(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38002434

RESUMO

The complex process of bone regeneration is influenced by factors such as inflammatory responses, tissue interactions, and progenitor cells. Currently, multiple traumas can interfere with fracture healing, causing the prolonging or failure of healing. In these cases, bone grafting is the most effective treatment. However, there are several drawbacks, such as morbidity at the donor site and availability of suitable materials. Advantages have been provided in this field by a variety of stem cell types. Adipose-derived stem cells (ASCs) show promise. In the radiological examination of this study, it was confirmed that the C/S group showed faster regeneration than the other groups, and Micro-CT also showed that the degree of bone formation in the defect area was highest in the C/S group. Compared to the control group, the change in cortical bone area in the defect area decreased in the sham group (0.874), while it slightly increased in the C/S group (1.027). An increase in relative vascularity indicates a decrease in overall bone density, but a weak depression filled with fibrous tissue was observed outside the compact bone. It was confirmed that newly formed cortical bone showed a slight difference in bone density compared to surrounding normal bone tissue due to increased distribution of cortical bone. In this study, we investigated the effect of bone regeneration by ADMSCs measured by radiation and pathological effects. These data can ultimately be applied to humans with important clinical applications in various bone diseases, regenerative, and early stages of formative differentiation.

3.
Nanoscale Adv ; 5(12): 3368-3375, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37325533

RESUMO

Surface engineered iron oxide nanoparticles (IONPs) with catecholic ligands have been investigated as alternative T1 contrast agents. However, complex oxidative chemistry of catechol during IONP ligand exchange causes surface etching, heterogeneous hydrodynamic size distribution, and low colloidal stability because of Fe3+ mediated ligand oxidation. Herein, we report highly stable and compact (∼10 nm) Fe3+ rich ultrasmall IONPs functionalized with a multidentate catechol-based polyethylene glycol polymer ligand through amine-assisted catecholic nanocoating. The IONPs exhibit excellent stability over a broad range of pHs and low nonspecific binding in vitro. We also demonstrate that the resultant NPs have a long circulation time (∼80 min), enabling high resolution T1 magnetic resonance angiography in vivo. These results suggest that the amine assisted catechol-based nanocoating opens a new potential of metal oxide NPs to take a step forward in exquisite bio-application fields.

4.
Molecules ; 28(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37110769

RESUMO

Serine protease is linked to a wide range of diseases, prompting the development of robust, selective, and sensitive protease assays and sensing methods. However, the clinical needs for serine protease activity imaging have not yet been met, and the efficient in vivo detection and imaging of serine protease remain challenging. Here, we report the development of the gadolinium-cyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-click-Sulfonyl Fluoride (Gd-DOTA-click-SF) MRI contrast agent targeting serine protease. The HR-FAB mass spectrum confirmed the successful formation of our designed chelate. The molar longitudinal relaxivity (r1) of the Gd-DOTA-click-SF probe (r1 = 6.82 mM-1 s-1) was significantly higher than that of Dotarem (r1 = 4.63 mM-1 s-1), in the range of 0.01-0.64 mM at 9.4 T. The in vitro cellular study and the transmetallation kinetics study showed that the safety and stability of this probe are comparable to those of conventional Dotarem. Ex vivo abdominal aortic aneurysm (AAA) MRI revealed that this probe has a contrast-agent-to-noise ratio (CNR) that is approximately 51 ± 23 times greater than that of Dotarem. This study of superior visualization of AAA suggests that it has the potential to detect elastase in vivo and supports the feasibility of probing serine protease activity in T1-weighted MRI.


Assuntos
Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética/métodos , Serina Proteases
5.
Sci Rep ; 11(1): 22731, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815501

RESUMO

In this study, preclinical experiments were performed with an in-house developed prototypal photon-counting detector computed tomography (PCD CT) system. The performance of the system was compared with the conventional energy-integrating detector (EID)-based CT, concerning the basic image quality biomarkers and the respective capacities for material separation. The pre- and the post-contrast axial images of a canine brain captured by the PCD CT and EID CT systems were found to be visually similar. Multi-energy images were acquired using the PCD CT system, and machine learning-based material decomposition was performed to segment the white and gray matters for the first time in soft tissue segmentation. Furthermore, to accommodate clinical applications that require high resolution acquisitions, a small, native, high-resolution (HR) detector was implemented on the PCD CT system, and its performance was evaluated based on animal experiments. The HR acquisition mode improved the spatial resolution and delineation of the fine structures in the canine's nasal turbinates compared to the standard mode. Clinical applications that rely on high-spatial resolution expectedly will also benefit from this resolution-enhancing function. The results demonstrate the potential impact on the brain tissue segmentation, improved detection of the liver tumors, and capacity to reconstruct high-resolution images both preclinically and clinically.


Assuntos
Encéfalo/patologia , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Neoplasias Hepáticas/patologia , Imagens de Fantasmas , Fótons , Tomografia Computadorizada por Raios X/instrumentação , Animais , Encéfalo/diagnóstico por imagem , Carcinoma Hepatocelular/diagnóstico por imagem , Meios de Contraste , Cães , Estudos de Viabilidade , Neoplasias Hepáticas/diagnóstico por imagem , Masculino , Redes Neurais de Computação , Coelhos , Tomografia Computadorizada por Raios X/métodos
6.
Biomaterials ; 243: 119939, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32182490

RESUMO

High sensitivity at ultra-high field (UHF) and sufficient potential to penetrate the brain are the most desirable characteristics in the development of contrast agents (CAs) for magnetic resonance imaging (MRI). However, incorporating such qualities into a single nanocarrier is challenging. Herein, we report a new strategy for a highly brain-permeable MR CA with high sensitivity at UHF by loading dysprosium chelates (DyL) in apoferritin cavities (Apo-DyL). We also design the chelate ligand structure to increase DyL loading capacity within the apoferritin cavity. Using the intracerebroventricular (ICV) injection approach as a new delivery route for Apo-DyL, we demonstrate that apoferritin loaded with DyL can penetrate the brain-ventricular barrier and diffuse into the brain. This brain-permeable capability is unique to Apo-DyL, compared with other types of nanoparticles used in MRI. Apo-DyL also shows significant increase in MR sensitivity of DyL at UHF. Furthermore, based on brain tumor imaging at UHF, Apo-DyL can significantly enhance the tumor for a lower dose of the CA than the previously reported Gd- or Mn-loaded apoferritin nanoplatform. Therefore, Apo-DyL can be a novel nanoplatform that is a highly sensitive and versatile MR CA for UHF brain imaging.


Assuntos
Apoferritinas , Meios de Contraste , Encéfalo/diagnóstico por imagem , Disprósio , Imageamento por Ressonância Magnética
7.
J Magn Reson Imaging ; 46(3): 813-819, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28092411

RESUMO

PURPOSE: To evaluate the feasibility, reproducibility, and variation of renal perfusion and arterial transit time (ATT) using pseudocontinuous arterial spin labeling magnetic resonance imaging (PCASL MRI) in healthy volunteers. MATERIALS AND METHODS: PCASL MRI at 3T was performed in 25 healthy volunteers on two different occasions. The ATT and ATT-corrected renal blood flow (ATT-cRBF) were calculated at four different post-labeling delay points (0.5, 1.0, 1.5, and 2.0 s) and evaluated for each kidney and subject. The intraclass correlation (ICC) and Bland-Altman plot were used to assess the reproducibility of the PCASL MRI technique. The within-subject coefficient of variance was determined. RESULTS: Results were obtained for 46 kidneys of 23 subjects with a mean age of 38.6 ± 9.8 years and estimated glomerular filtration rate (eGFR) of 89.1 ± 21.2 ml/min/1.73 m2 . Two subjects failed in the ASL MRI examination. The mean cortical and medullary ATT-cRBF for the subjects were 215 ± 65 and 81 ± 21 ml/min/100 g, respectively, and the mean cortical and medullary ATT were 1141 ± 262 and 1123 ± 245 msec, correspondingly. The ICC for the cortical ATT-cRBF was 0.927 and the within-subject coefficient of variance was 14.4%. The ICCs for the medullary ATT-cRBF and the cortical and medullary ATT were poor. The Bland-Altman plot for cortical RBF showed good agreement between the two measurements. CONCLUSION: PCASL MRI is a feasible and reproducible method for measuring renal cortical perfusion. In contrast, ATT for the renal cortex and medulla has poor reproducibility and high variation. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:813-819.


Assuntos
Rim/irrigação sanguínea , Rim/fisiologia , Imageamento por Ressonância Magnética/métodos , Circulação Renal/fisiologia , Adulto , Idoso , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Reprodutibilidade dos Testes , Marcadores de Spin , Tempo
8.
Bioconjug Chem ; 27(9): 2007-13, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27504746

RESUMO

Specific recognitions of pathogen associated molecular patterns by Toll-like receptors (TLRs) initiate dendritic cell (DC) activation, which is critical for coordinating innate and adaptive immune responses. Imidazoquinolines as small-molecule TLR7 agonists often suffer from prompt dissemination and short half-life in the bloodstream, preventing their localization to the corresponding receptors and effective DC activation. We postulated that covalent incorporation of imidazoquinoline moieties onto the surface of biocompatible nanoparticles (∼30 nm size) would enhance their chemical stability, cellular uptake efficiency, and adjuvanticity. The fully synthetic adjuvant-nanocomplexes led to successful DC activation at lower nanomolar doses compared with free small-molecule agonists. Once a model antigen such as ovalbumin was used for immunization, we found that the nanocomplexes promoted an unusually strong cytotoxic T lymphocyte response, revealing their unique immunostimulatory capacity benefiting from multivalency and efficient transport to endosomal TLR7.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Nanopartículas/química , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Relação Dose-Resposta a Droga
9.
Sci Rep ; 5: 15656, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26493381

RESUMO

With the applications of magnetic resonance imaging (MRI) at higher magnetic fields increasing, there is demand for MRI contrast agents with improved relaxivity at higher magnetic fields. Macromolecule-based contrast agents, such as protein-based ones, are known to yield significantly higher r1 relaxivity at low fields, but tend to lose this merit when used as T1 contrast agents (r1/r2 = 0.5 ~ 1), with their r1 decreasing and r2 increasing as magnetic field strength increases. Here, we developed and characterized an in vivo applicable magnetic resonance (MR) positive contrast agent by conjugating Gd(III)-chelating agent complexes to lumazine synthase isolated from Aquifex aeolicus (AaLS). The r1 relaxivity of Gd(III)-DOTA-AaLS-R108C was 16.49 mM(-1)s(-1) and its r1/r2 ratio was 0.52 at the magnetic field strength of 7 T. The results of 3D MR angiography demonstrated the feasibility of vasculature imaging within 2 h of intravenous injection of the agent and a significant reduction in T1 values were observed in the tumor region 7 h post-injection in the SCC-7 flank tumor model. Our findings suggest that Gd(III)-DOTA-AaLS-R108C could serve as a potential theranostic nanoplatform at high magnetic field strength.


Assuntos
Compostos Heterocíclicos/química , Complexos Multienzimáticos/metabolismo , Nanopartículas , Compostos Organometálicos/química , Animais , Meios de Contraste , Imageamento por Ressonância Magnética , Camundongos , Neoplasias Experimentais/patologia
10.
Nanomedicine ; 10(8): 1679-89, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24842765

RESUMO

Contrast-enhancing magnetic resonance mechanism, employing either positive or negative signal changes, has contrast-specific signal characteristics. Although highly sensitive, negative contrast typically decreases the resolution and spatial specificity of MRI, whereas positive contrast lacks a high contrast-to-noise ratio but offers high spatial accuracy. To overcome these individual limitations, dual-contrast acquisitions were performed using iron oxide nanoparticles and a pair of MRI acquisitions. Specifically, vascular signals in MR angiography were positively enhanced using ultrashort echo (UTE) acquisition, which provided highly resolved vessel structures with increased vessel/tissue contrast. In addition, fast low angle shot (FLASH) acquisition yielded strong negative vessel contrast, resulting in the higher number of discernible vessel branches than those obtained from the UTE method. Taken together, the high sensitivity of the negative contrast delineated ambiguous vessel regions, whereas the positive contrast effectively eliminated the false negative contrast areas (e.g., airways and bones), demonstrating the benefits of the dual-contrast method. FROM THE CLINICAL EDITOR: In this study, the MRI properties of iron oxide nanoparticles were studied in an animal model. These contrast agents are typically considered negative contrast materials, leading to signal loss on T2* weighted images, but they also have known T1 effects as well, which is lower than that of standard positive contrast agents (like gadolinium or manganese) but is still detectable. This dual property was utilized in this study, demonstrating high sensitivity of the negative contrast in delineating ambiguous vessel regions, whereas the positive contrast eliminated false negative contrast areas (areas giving rise to susceptibility effects).


Assuntos
Meios de Contraste , Compostos Férricos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Animais , Meios de Contraste/química , Ratos
11.
Biomacromolecules ; 14(7): 2332-9, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23758486

RESUMO

P22 viral capsids and ferritin protein cages are utilized as templating macromolecules to conjugate Gd(III)-chelating agent complexes, and we systematically investigates the effects of the macromolecules' size and the conjugation positions of Gd(III)-chelating agents on the magnetic resonance (MR) relaxivities and the resulting image contrasts. The relaxivity values of the Gd(III)-chelating agent-conjugated P22 viral capsids (outer diameter: 64 nm) are dramatically increased as compared to both free Gd(III)-chelating agents and Gd(III)-chelating agent-conjugated ferritins (outer diameter: 12 nm), suggesting that the large sized P22 viral capsids exhibit a much slower tumbling rate, which results in a faster T1 relaxation rate. Gd(III)-chelating agents are attached to either the interior or exterior surface of P22 viral capsids and the conjugation positions of Gd(III)-chelating agents, however, do not have a significant effect on the relaxivity values of the macromolecular conjugates. The contrast enhancement of Gd(III)-chelating agent-conjugated P22 viral capsids is confirmed by in vitro phantom imaging at a short repetition times (TR) and the potential usage of Gd(III)-chelating agent-conjugated P22 viral capsids for in vivo MR imaging is validated by visualizing a mouse's intravascular system, including the carotid, mammary arteries, the jugular vein, and the superficial vessels of the head at an isotropic resolution of 250 µm.


Assuntos
Bacteriófago P22 , Vasos Sanguíneos/anatomia & histologia , Capsídeo , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Animais , Quelantes/química , Ferritinas/química , Gadolínio/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...